Can't this application go any
faster?

Tamar E. Granor

Tomorrow’s Solutions, LLC

Voice: 215-635-1958

Website: www.TomorrowsSolutionsLLC.com
Email: tamar@ TomorrowsSolutionsLLC.com

What do you do when your customer says that your application is too slow? How can you
figure out what's slowing things down? How can you make it faster?

Optimization of a VFP application is more than just applying Rushmore correctly, though
that's an important step. In this session, we'll explore techniques for measuring performance
of a VFP application and look at things you can do to speed it up.



Can't this application go any faster?

Introduction

Back in 2014, it came as an email with the words “speed up” in the title. A long-time client
was finally ready to address a bottleneck in the application I'd written and that they
supplied to their customers. I'd wanted to take a look at this piece for quite a while, but it
had never come to the top of their priority list until that email.

The process in question involved reading an XML file into DBFs and then building an object
model from the DBF data. While it was tempting to consider simply eliminating the DBFs
and going right from XML to objects, | knew that such a change would require touching too
many parts of the application.

[ was pretty sure I could speed up the first part, going from XML to DBF, without too much
digging. The existing code used the XMLAdapter class; I'd read Doug Hennig's FoxRockX
article (January, 2013) about using Rick Strahl’s dotNetBridge instead. I wasn’t sure what I
could do with the second part but figured there must be some room for improvement.

[ also realized right away that I needed a way to measure the speed of each process, so |
could see whether [ was making any improvement.

In this session, we’ll look at the available tools for measuring performance, and examine
the areas where I tried for improvement, seeing which helped and which didn’t. One of the
real takeaways for me from this experience was that even established best practices need
to be re-examined in the light of slow performance, so we’ll also look at performance for
some of my best practices.

In the years since speeding up that code, I've had to tackle speeding up other applications
for other clients, and the tools and techniques I used for this long-ago task have generally
been helpful. But of course, along the way, I've learned about other places where VFP
applications can get bogged down.

I'm using different computers and a different version of Windows for testing than I did
when [ first wrote this session in 2015. This time around, I've tested each example on two
different computers, one of which I disconnected from the Internet for testing. In both
cases, [ shut down my email client and as many other applications that run things in the
background as I could. I found some significant differences from the values I reported in
2015, though except where noted, what I said was faster then still tests as faster now. The
speed differences between techniques that I cite are generally based on this year’s tests.

Measuring performance

There are several different things you can measure in VFP that might constitute
“performance.” The most obvious is simply how long it takes to do something. But VFP also
provides a tool for measuring query optimization, and a set of tools for measuring
performance of entire routines and individual lines.

Copyright 2025, Tamar E. Granor Page 2 of 51



Can't this application go any faster?

Collecting start and end times

Let’s start with the simplest item, measuring how long it takes to do something. You can do
this by simply checking the time when you start and the time when you finish. The
SECONDS() function is the easiest way to do so. Grab the value just before starting the
process and right after finishing, as in Listing 1.

Listing 1. The SECONDS() function is the easiest way to measure how long a section of code takes.
LOCAL nStart, nEnd

nStart = SECONDS()

* Do the process to be measured.
nEnd = SECONDS()

* Elapsed time is nEnd-nStart

However, that approach raises several issues. First, SECONDS() returns the seconds since
midnight, so if the test can run across multiple days, you need to collect the start and end
dates as well. The DATETIME() function makes it easy to do that and you can still do
arithmetic with it. Using DATETIME(), the model changes to Listing 2.

Listing 2.Use DATETIME() to measure start and end times if there’s any chance your test could run across
multiple days.

LOCAL tStart, tEnd

tStart = DATETIME()

* Do the process to be measured.

tEnd = DATETIME()

* Elapsed time in seconds is tEnd-tStart

The second issue is that in VFP, even slow things can be very fast. That is, seconds may not
be a small enough measuring unit. In fact, SECONDS() returns three decimal places (that is,
milliseconds). That’s one reason you may choose to stick with SECONDS() rather than using
DATETIME(), which has only one-second resolution.

But there are still cases where even millisecond resolution is not sufficient. For testing
different approaches to a problem to see which is best, the solution is to perform the action
multiple times (1000 or 10,000 or 100,000) in a loop. The code in Listing 3 puts this model
to work and demonstrates that FOR loops are about an order of magnitude (that is,
approximately 10 times) faster than equivalent DO WHILE loops; it’s included in the
materials for this session as DoWhileVsFor.PRG.

Listing 3. To compare speed for different approaches, perform each in a loop.
#DEFINE PASSES 10000
LOCAL nDOWStart, nDOWEnd, nFORStart, nFOREnd, nPass, nCounter

* First, DO WHILE

Copyright 2025, Tamar E. Granor Page 3 of 51



Can't this application go any faster?

nDOWStart SECONDS()

FOR nPass = 1 TO PASSES
nCounter =1
DO WHILE nCounter <= 1000

nCounter = m.nCounter + 1

ENDDO

ENDFOR

nDOWENnd = SECONDS()

* Now, FOR

nFORStart = SECONDS()

FOR nPass = 1 TO PASSES
FOR nCounter = 1 TO 1000
ENDFOR

ENDFOR

NFOREnd = SECONDS()

DEBUG
DEBUGOUT "DO WHILE--", PASSES, " passes:", nDOWEnd-nDOWStart
DEBUGOUT "FOR--", PASSES, " passes:", nFOREnd-nFORStart

RETURN

Of course, this approach isn’t helpful when testing inside an application, but you can argue
that if the elapsed time for a block is less than a millisecond, that’s not a place to be putting
your optimization efforts.

Christof Wollenhaupt recommends turning the loop idea inside out and running the test for
a fixed period of time, measuring how many times you get through the loop in that period.
In this version, the winner is the approach that gives the larger result, indicating that you
were able to execute it more times in the specified period. Using that approach, the same
test as before looks like Listing 4. This version is included in the materials for this session
as DoWhileVsForFixedTime.PRG. Not surprisingly, it gives similar results, showing that you
can run about 10 times as many times through the FOR loop as through the DO WHILE loop
in the same period of time.

Listing 4. This version of a timing test measures how many times you can accomplish a given task in a
specified period of time.

#DEFINE SECONDSTORUN 5

LOCAL nDOWStart, nDOWEnd, nFORStart, nFOREnd, nDOWPasses, nFORPasses
* First, DO WHILE
nDOWPasses = 0

nDOWStart = SECONDS()
nDOWEnd = m.nDOWStart + SECONDSTORUN

Copyright 2025, Tamar E. Granor Page 4 of 51



Can't this application go any faster?

DO WHILE m.nDOWEnd > SECONDS()
nCounter =1
DO WHILE nCounter <= 1000
nCounter = m.nCounter + 1
ENDDO
nDOWPasses = m.nDOWPasses + 1
ENDDO

* Now, FOR
nFORPasses = ©

nFORStart = SECONDS()
NnFOREnd = m.nFORStart + SECONDSTORUN

DO WHILE nForEnd > SECONDS()
FOR nCounter = 1 TO 1000
ENDFOR
nFORPasses = m.nFORPasses + 1
ENDDO

DEBUG

DEBUGOUT "DO WHILE--", m.nDOWPasses, " passes in ", SECONDSTORUN, "seconds"
DEBUGOUT "FOR--", m.nFORPasses, " passes in ", SECONDSTORUN, "seconds"
RETURN

This approach helps smooth out testing, so you're not as dependent on how long the
process you're testing takes. As long as you make the fixed period long enough to
encompass multiple passes, you can run the test on any machine and not have to adjust it.
You also know about how long your total test will take. When you choose an arbitrary
number of passes, you don’t know whether you're going to be waiting one second, ten
seconds, ten minutes, or ten hours. You have to make an initial guess at the number of
passes to give you a good test without a long wait and then fine-tune it.

The third issue is that testing in the Windows environment is inherently flawed. That is,
between Windows itself and various services that are always running, any one test result
might be inaccurate. The solution here has two parts. First, before testing, turn off anything
you can that might interfere, such as an email client, on-demand virus scanning, and so
forth. Second, perform more than one test for each case. That advice is also important
because VFP caches data, so the first time you run a process that uses DBFs, it’s likely to
take longer than subsequent runs.

You also need to decide what you're going to do with the speed test results. When I do
quick comparisons of techniques for speed, I typically just echo the results to the screen
with ? or use DEBUGOUT to send them to the Debugger’s Debug Output window. (Be
careful not to open the Debugger in the middle of a test because all VFP code runs slower
with the Debugger open.)

When testing inside an application, though, such ad hoc approaches may not be helpful.
That’s especially true if you need to be able to test a compiled application. In that case,

Copyright 2025, Tamar E. Granor Page 5 of 51



Can't this application go any faster?

saving timing results to a file makes sense. My client’s application already included a way to
log information to a text file, with each message time stamped, so [ just used the existing
mechanism to send appropriate messages (such as “Starting phase 1”) to the log. Listing 5
shows a simplified version of the logging class I use. Once the class is instantiated, you can
call a method with just the message to be logged, as in Listing 6, where ['ve assumed
there’s an application object with a property to reference the logger. The result is a line like
the one shown in Listing 7. The materials for this session include Logger.PRG, which
includes the class definition and the code to use it.

Listing 5. A simple logging class makes it easy to send information about execution times to a file for analysis.
DEFINE CLASS cusLogger AS Custom

cLogFile =

PROCEDURE LogIt
LPARAMETERS cLogString, 1lStartNewLogFile

IF EMPTY(This.cLogFile)
This.cLogFile = FORCEPATH("Tracking.Log", SYS(2023))

ENDIF

STRTOFILE(TTOC(DATETIME()) + ":" + m.cLogString + CHR(13) + CHR(1@), ;
This.cLogFile, not m.lStartNewLogFile)

RETURN

ENDDEFINE

Listing 6. A simple method call adds a message to the log.
goApp.oLogger.LogIt("Starting phase 1.")
Listing 7. The call in Listing 6 produces this line in the log.

03/16/25 ©3:10:35 PM:Starting phase 1.

Of course, you can also save a log in a table. In the simplest case, the table might be simply a
datetime field and a memo field.

Coverage Logging and the Coverage Profiler

VFP includes a pair of tools that collect and present data about what lines of code run and
how long they take. The Coverage Logger records each line of code that executes, including
how long it took. The Coverage Profiler processes a coverage log and presents the
information visually. Like many of the tools that come with VFP, the Coverage Profiler has
an add-in mechanism that lets you extend its behavior. In addition, not only is the log
created by the Coverage Logger easy to parse and process with custom code, but you can
substitute a different tool to process the log.

Copyright 2025, Tamar E. Granor Page 6 of 51



Can't this application go any faster?

Creating Coverage logs

You can start the Coverage Logger from the Debugger or with code. Interactively, use Tools
| Coverage Logging ... from the Debugger menu or click the Toggle coverage logging button
on the Debugger’s toolbar. In either case, the Coverage dialog, shown in Figure 1, appears.
Specify the name of a file to hold the log and indicate whether to add to an existing log or
start a new one. Once you click OK, each line of VFP code that executes is logged. To turn
logging off interactively, use the toolbar button.

=y Coverage X

Log program execution
File:

| ) (o

Append Q) Owerwtite

e 4

Figure 1. The Coverage dialog lets you turn Coverage Logging on.

You can also turn coverage logging on and off programmatically using the SET COVERAGE
command. SET COVERAGE TO a file to turn coverage on; issue SET COVERAGE TO without
a filename to turn it off. When turning coverage on, you can use the optional ADDITIVE
keyword to add to an existing log. For example, the code in Listing 8 turns on coverage
logging, and sets it up to add to an existing log called Cover.Log.

Listing 8. You can start coverage logging programmatically with the SET COVERAGE command.

SET COVERAGE TO Cover.Log ADDITIVE

Using the Coverage Profiler

The Coverage Profiler takes a coverage log and displays it with the relevant code. The tool
has two main modes: coverage mode and profile mode. Coverage mode lets you see which
lines of code were executed and which were not, in other words, how much of the code was
covered by the test.

For optimization, we’re interested in profile mode, which shows each line of code, and
indicates how many times it ran, how long it took the first time it was executed, and the
average time for all executions of that line. Figure 2 shows an example. The log was
created by running the Solution Samples application that comes with VFP and running
several of the samples. (You'll find a similar coverage log in the session materials as
SolCover.LOG.)

Copyright 2025, Tamar E. Granor Page 7 of 51



Can't this application go any faster?

[E Microsoft Visual FoxPro Coverage Profiler = a X
B d:\writing\confs\vf\vff2025 may\examples\solcover.log - Coverage Profiler E@

EE B2 O ¢

_reportlistener d:Mfoxbwlp SN _reportlistener.ves

frmzalution d:hfowhwfp Przampleshzolutionteuropahanchors_away. sox |

All Clagzes, DObjects, Procs d:howhwfp Przampleshzolutiont.europahdynamiciarmatting. prg

_reportlistener d:\foxhvwip Thsamplessolutionheuropadynamiciormatting. prg

frmzolution d:hfowhwfp Przampleshzolutionteuropahdynamiciormatting scx

frnzolutionT. commandl d:hfowhwtp Przampleshzolutiont.europahdynamiciormatting, sox

frrnzalution . command2 d:Mfoxhvwfp Shsamplessolutionheuropatdynamiciormatting. scx

EMDPROC

PROCEDURE setfirsdatazessionenviranment
THib 1t 0002229 Awg 0002229 THIS 2etFRXD ataSession|]
1Hit 1t 0000307 Awg 0000307 SET TALK QFF

EMDPROC

FROCEDURE nwvokeoncurentpass |
OHitz 15t 0.000000 Awg0.000000 RETURM .T.

EMDPROC

FROCEDURE rezetdatasession
271 Hitz 12t 0000212 Awg 0000314 |F [THIS listenerD ataS ezsion » -1]
871 Hit= 1zt 0.000323 Awg 0000309  TRY
871 Hitz 12t 0.000297  Aswg 0.000311 SET DATASESSION TO [THIS. listenerD ataSession)
871 Hits 15t 0.000000 Awg0.000000  CATCH WHEM T,
OHitz 12t 0.000000 Awg 0000000 THIS RezetTaDefaull] listeneil ataS ession']
OHitz 15t 0.000000 Aswg 0.000000 SET DATASESSION TO [THIS listenerD ataS ession)
871 Hit 12t 0.000312 Awg 0000313 EMDTRY

EMDIF

EMDPROC
PROCEDURE setfradatazession
10Hits 15t 0000317 Awg 0000338 IF [THIS FRXD ataSession > -1] AMD [THIS FRXD ataSession # SET["DATASESSION"])

10Hits 1st 0000308 Awg 0000317 TRY

10 Hitz 1t 0000308 Awg 0.000314 SET DATASESSION TO [THIS.FR*DataSession]
10 Hits 1st 0000000 Awg 0000000  CATCH WHEM T

OHitz 12t 0.000000 Awg 0000000 THIS . RezetTaDefaull] FR=D ataS ezsion')

OHitz 12t 0.000000 Asg 0.000000 THIS rezetDataSeszion(]

10Hits 1st 0000312 Awg 0000319  EMDTRY

EMDIF

EMDPROC
FROCEDURE setcunentdatasession

Figure 2. In Profile mode, the Coverage Profiler gives you information about the execution of each line.

The top frame shows the various sources of code in the log. Click on one and profile
information for that block of code populates the bottom frame.

One thing that may not be obvious from the figure is that the times shown are rolled up.
That is, if the line includes calls to other code, the time includes the time to execute that
called code.

In my experience, while Profile Mode is somewhat helpful for eyeballing for slow code, it
isn’t really useful for serious optimization work. For that, you need either to use an add-in,
to work directly with the coverage log, or to use an alternate profiling tool. All three
approaches are discussed later in this section.

Copyright 2025, Tamar E. Granor Page 8 of 51



Can't this application go any faster?

Profiling at runtime

In VFP 9, you can turn coverage on and off at runtime using the SET COVERAGE command.
However, the coverage files produced at runtime can be hard to use with the Coverage
Profiler because the paths shown for the files may not match their locations in your
development environment. Rick Schummer created a tool to solve this problem; you give it
a coverage log and a little more information and it creates a copy of the coverage log with
the paths fixed to match your environment.

With Rick’s permission, the Coverage Log Path Fixer (originally distributed with the book
“What’s New in Nine: Visual FoxPro’s Latest Hits”) is included in the materials for this
session; it’s in the Tools folder. Figure 3 shows the tool at work on the example log.

=B ol ™3

White Light Computing, Inc.
support@whitelightcomputing. com

- Coverage Log Path Fixer v1.0.1

Production Coverage Log File
di\writing\confsswioxswiox 20 15\optimization'code \solcover. log

Fixed Coverage Log File
d:\weriting\confs\swiox\swiox 20 15 optimization\code \solcover _fixed.log

]

67,547 coverage log entries

Duration  Objdass Executing  Prodline Hostfile Stacklvl Filetype Path ~
0.000143 main 14 |d:Vox wipYsamples\solution\solution.app 1 d:\,fox‘l,vfpg\,samples‘lsd =
0.000046 main 25 |d:\fox'\wip3'samples\solution\solution.app 1 d: \foxwfpisamplesisc—
0.000023 main 26 |d:\fox \wip9'samples\solution\solution.app 1 d: Vo wfpS\samples'sc
0.056710 main 30 |d:Vox wip9isamples\solution \solution.app 1 d: VfouWwip3\samples'sc
0.000032 |c_solutions |c_salutions. init 3| d:\ox \wip9isamples\solution\solution. vt 2 d: VfouWwip3\samples'sc
0.000012 |c_solutions |c_solutions. init 11 |d:\fox\wip3'samples\solution\selution. vct 2 d: Yo' Wwip3isamplesisc
0.000012 |c_solutions |c_solutions. init 15 |d: \fox\wip8'samples\solution\selution. vct 2 d: Yo' Wwip3isamplesisc
0,000170 |c_solutions [c_solutions. init 16 |d:\fox'\wip9samples\solution\solution. vct 2 d:\foxWwip9\samples'sc
0.000014 |c_solutions [c_salutions. init 17 |d:\fox'\wip9samples\solution\solution. vct 2 d: Vo wfpS\samples'sc
0.000014 |c_solutions [c_solutions. init 18 |d: \fox'\w fp9'samples \solution\solution. vct 2 d:\fox\wfp9\samples'sc

| «

Production Path

I

Development Path

8

d:\fooc\wfp9

d:VfoxWwipsiffc

d: Yo WwipSisamples\solution
d: Yo \WwipSisamples'solution'europa
d: Yo \wip3\samplessolutiontahoe

‘ Fix Paths |

| «

I I+

Figure 3. Rick Schummer’s Coverage Log Path Fixer lets you fix the paths in a coverage log created in the
runtime environment, so that you can use the Coverage Profiler on that file.

To use the too], first point to the coverage log to be fixed. The tool automatically generates
a name for the fixed version by appending “_fixed” to the file stem, but you can overwrite
that, if you wish. Once you’ve pointed to the log to fix, the tool analyzes the log and
produces a list of code folders it references. For each path shown in the first column of the

Copyright 2025, Tamar E. Granor Page 9 of 51



Can't this application go any faster?

bottom grid, you click the Select Directory button to point to the corresponding
development environment folder. Once you’ve specified all the folders, click Fix Paths to
generate the fixed log file.

While I haven't tested this idea, I suspect this tool can also be used to adjust a coverage log
created by a developer who has set up her development environment differently from
yours. (Of course, two people sharing code and using different directory structures will run
into other problems.)

Coverage Profile add-ins

Like many of the tools that come with VFP, the Coverage Profiler has an open architecture.
It includes a mechanism for hooking in additional tools, called “add-ins.” (The VFP Help file
contains some documentation for Coverage Profiler add-ins. This article by Lisa Slater
Nicholls, who wrote the Coverage Profiler, provides a deeper look:
https://spacefold.com/lisa/archive/retirement-home/ and then click “Coverage
Extensions article”.)

In this paper, we're not going to look at creating add-ins. Instead, we’ll just look at some
add-ins helpful for optimization. To run a Coverage Profiler add-in, you click the Add-Ins
button on the Coverage Profiler toolbar; it’s highlighted in Figure 4. The Add-ins dialog
(see Figure 5) appears.

= &3 ElZ A=

Figure 4. The Add-ins button lets you run Coverage Profiler add-ins.

@, Coverage Profiler Add-Ins

Add-ns

d:\foxbutihties\coverageimaxcov.app EI

Cancel

Reqister this Add-ln after running

Figure 5. Use this dialog to specify an add-in to run and to register add-ins, so they’re available in future
without having to find them.

Markus Egger’s MaxCov add-in offers several useful features; it’s included in the materials
for this session, with Markus’s permission. It shows the total time spent on a line, a value
which isn’t available in the Coverage Profiler itself. It lets you choose a method to look at or
to look at all methods; it also lets you choose to show only executed lines or only those
lines that didn’t execute. Most helpful for optimization is that it lets you highlight lines that
are slow or that are used often. Figure 6 shows MaxCov looking at the same log file as used
for Figure 2.

Copyright 2025, Tamar E. Granor Page 10 of 51


https://spacefold.com/lisa/archive/retirement-home/

Can't this application go any faster?

=4 Markus Eggers Coverage Snippet Analyzer ‘Elg‘ﬂ—hj
cAll Methods> [ | Show &l Lines =B @& &
Hits  FirstHit  Average Total Time Code -

ENDPROC

PROCEDURE setfradatasessionenvionment
1 0.000 0002 0002 3 THIS setFRXD ataSession(]
1 0.000 0.000 0000 7 SET TALK OFF

ENDPROC
PROCEDURE invokeoncurentpass
0 RETURN.T.
ENDPROC
PROCEDURE resetdatasession
IF [THIS listenerD akaS ession > -1]
TRY

n

871 0000 0.000 oz 4

871 0.000 0.000 0261 k|

871 0000 0000 0270 1 SET DATASESSION TO [THIS istenerDataSession]
871 0.000 0.000 0000 0 CATCHWHEN.T.

1} THIS ResetToDefaullistenerD ataS ession”]

0 SET DATASESSION TO [THIS listenerDataSession]
3 EMDTRY

ENDIF

871 0.000 0.000 0.z

ENDPROC
PROCEDURE setfredatasession
10 0.000 0000 0003 8 IF [THIS FRXDataSession > -1) AND (THIS FRADataSession # SET("DATASESSION"))

10 0.000 0000 0003 7 TRY
10 0.000 0000 0003 4 SET DATASESSION TO [THIS.FRXD ataSession]
10 0.000 0.000 0000 0 CATCHWHEN.T.

1) THIS ResetToDefault FR*D atas ession”]

0 THIS resetDataSession()
10 0.000 0000 0003 3 EWDTRY
ENDIF

ENDPROC
PROCEDURE setcurentdatasession
1 0.000 0000 0.000 0 IF [THIS CunentDataSession # SET("DATASESSION")) -

I 4 L} 3

Figure 6. Markus Egger’s Coverage Profiler add-in, MaxCov, makes it easier to find the slow parts in a
coverage log.

The dropdowns in the toolbar let you choose a method and which lines to show. Method
declaration lines (that is, PROCEDURE or FUNCTION lines) are highlighted in yellow to
make it easy to see where one method stops and the next begins; the first button on the
toolbar lets you toggle that feature.

The red down arrow button determines whether to highlight slow code; the blue down
arrow determines whether to highlight both slow code and code that’s executed many
times. The last two buttons let you move quickly from one method to the next.

Although MaxCov offers more information and better ways to filter it than the Coverage
Profiler itself, it needs some changes to be a tool I'd use often. Most important in my view is
the ability to customize. I'd like to choose larger fonts, as well as be able to specify what |
consider slow and how many hits make a line “frequently used.”

The Solution Samples that come with VFP 9 include a Coverage Profiler add-in called
“Coverage Profiler Performance Add-in.” The file to point to with the Add-ins dialog is
Samples\Solution\Coverage\covperfaddinfs.scx in your VFP installation.

Like MaxCov, this add-in shows the total time spent on a line. You can click any column
header to sort by that column and click again to reverse the order. A toolbar button lets you
restore the original order (though it’s not clear what order that is). Figure 7 shows this
add-in as it opens with the same coverage log used for the other examples.

Copyright 2025, Tamar E. Granor Page 11 of 51




Can't this application go any faster?

@ Coverage Profiler Performance Add-in ‘ = B e
sl FHAML=HR B Be 7 ¥ -] x
ICode Hits  First Avg Total Source Line Method Objclass Filetype -
Bl codefault() =
T witn This 1| 0001469)  0.001469|  0.001469|d 16|Init P =
= createobject(Collection’) 1| 0001485]  0.001485]  0.001485|d 17|init fp
DynamicF l0rEfect) 1| 0001535]  0.001535]  0.001535|d 18|Init P
D, M) 1 0001515 0.001515]  0.001515]d 18|Init fp
endwith 1 0001462  0.001462]  0.001462]d 20[Init P
dodefault() 1| 0028905]  0.028905]  0.028905|d: fp
with This 1| 0000643  0.000643]  0.000643]d D P
SetFRXDataSession() 1| 0002698]  0.002698]  0.002698|d: 31 P fp
dimension ).21 1| 0000679]  0.000679]  0.000679]d D P
ResetDataSession() 1| 0002764]  0.002764]  0.002764]d 3 P fp
endwith 1| 0000671]  0.000671]  0.000671]d 34 D P
aRecords[inFRXRecno, 1]= 1. 7| 0000835  0.000630]  0.004410]d: RXRecno, fp
2= 7 0017775 0.017756] 01242924 RXRecno P
lo0bject 7| 0000864]  0.000646]  0.004522]d: i fp
with This 7 0000633]  0.000649]  0.004543d i i P
10FRX__= GelReportObject(tnFRXRecno) 7| on00877s]  0.008557]  0.059899]d: i fp
loHandlers = Collection) 7] 0000675]  0.000649]  0.004543]d i P
for each loEffectHandler in .oEffectHandlers 7| 000084s]  0.000646]  0.004522]d: i fp
l00bject = ) 14| 0000839]  0000775]  0.010850[d 81 i P
if vartype loObject) = ‘0’ 14| 0.000678]  0.000856]  0.009184[d i fxp
loHandlers Add(loObject) 2[ 0o000638]  0.000637]  0.001274]d i P
next loEffectHandler 14| 0.000667] 0000850  0.008100[d i fp il
I ot ST nnnnasal  nnnnearl  nnnsiea E on -

Figure 7. The Performance Add-in, found in the Solution Samples, lets you sort and filter the information
from the log.

Beyond sorting the data, the Performance Add-in lets you search in any column, highlight
slow lines, and filter data based on expressions you specify. An Options dialog lets you
define the value that determines “slow,” as well as which field (First, Avg, or Total) to base
it on. Filters you specify are added to the dropdown in the toolbar (and remembered from
one session to the next), so you can switch among them. Figure 8 shows this add-in’s form
filtered so that only lines with a total time more than 0.1 seconds are shown.

-¢ Coverage Profiler Performance Add-in ‘ = |E= éﬁ
SHSEHATENR 8 R+ =9 v [N~ x
[code Hits _First Avg Total Source Line _Metnod Objclass Filetpe
Bl =Records(inFRXRecno, 2= SeiupEfiectsForObjeci{inFRXRecno) ]
0 READ EVENTS 1| 57.860770| 57.860770| 57.860770|d prg 31|Hits fp
WODIFY DATABASE (ALLTI path) + v + ALL 3] 0098878] 0072428 0.217284[d scx 5[solutions cmdrun Click solutions cmdrun sct
madify report forcepath(DynamicF ormatting FRX, IcDirectory) 1| 3160994 3160994  3160994[d 1 Click 1 sct
forcepath(DynamicFormatiing.prg’, IcDirectory)) 1] 0112301 0112301  0.112301[d 1 1.command1.Click irms olution.command1 sct 3
report form forcepath(DynamicFormatting FRX, IcDirectory) object loListe] 1] 41.668134]  41666134]  41.668134|d 1.command1.Click irms olution.command1 sct
IF (THIS listenerD: =) 871 0.000312]  0.000314]  0.273494|d\oxvfpaiicl o 1] L K L vet
TRY 871 0.000323]  0000309]  0.269139|d\oxfpaiicl o 2| s L K L vet
SET DATASESSION TO (THIS listenerD: 871  0.000297|  0000311]  0.270881|d\oxvfpaiicl o 3]s L K L vet
ENDTRY 871 0.000312]  0000313]  0.272623|d\oxvfpaifcl o 7] L K L vet
i 2= i 7| 0017775]  0017756]  0.124292[d 48] EvalualeC _ fp
THIS Amount = THIS Value 1| 1153379] 1153379  1153379[d _assign Valid vet
EBOX(BADAMOUNT_LOC) 1| 1152898] 1152898  1.152898[d _assign amount_assign vet
ey P I S o b gpitmeian g

Figure 8. The Performance Add-in lets you filter coverage data based on expressions you specify.

This add-in also offers a couple of reports. The slow lines report shows just lines
considered slow; your choices in the Options dialog determine which field it’s based on and
what percentage of lines are included. Figure 9 shows the report, using the default settings
of the First field and 25%.

Copyright 2025, Tamar E. Granor Page 12 of 51




Can't this application go any faster?

Slow Lines report
Slowest 25 Percent

Based On field: First
02726715

Code Hits First Avg Total

0 READ EVENTS 57.E60770 B7.E60770 57860770
repart farm farcepath 41668134 41668134 41668134

(' DyramicFarmatting FRX', IcDirectory) object

lalisterer

madify repart farcepath 3160904 2160004 3160994
(" DyramicFarmatting FRX", IcDirectory)

THIS.Amaunt = THIS Value 1153379 1153379 1153379
MESSASEBOX(BADAMOUNT_LOC) 1152898 1152698 1152898

Torcepath{’ DynamicFarmattingprg". 0112301 0112301 0112201
Icbirectary))

MODIFY DATABASE (ALLTRIM{solutionspath)+ 0096878 0072428 0217284
"\ + ALLTRIM{salutionsfilel) NOWAIT

use addbs(hamel)) + 0060383 0060383 0060383
" Samples\NarthwindyOrders’

DO FORM salutian 0056710 0056710 0056710
dadefault]) 0028905 0028905 0028905
dadefault) 002E005 0.02E8005 0028005
THISfilltree 0028240 0028240 0028240

ARecords[nFRXRecn, 2] 0017775 0017756 0124292
= SetupEffectsForObject{tnFRXRecna)

aRecords[inFRXRecna, ] 0017775 0017756 0124292
= SefupEffecisForObject{inFRXRecna)

Salution.Shaw 0010086 0o0B321 0024963

Fage

Figure 9. The Performance Add-in’s Slow Lines report shows you the slowest lines in the log, using a
percentage and field you specify.

Perhaps more useful is the Slow Methods report, which shows the slowest methods by total
method time. The same percentage you specify in the Options dialog determines how many
methods show. Figure 10 shows the report with the percentage set to 40. Obviously, you
want to choose this value based partly on the number of different methods in your log.

Copyright 2025, Tamar E. Granor Page 13 of 51



Can't this application go any faster?

Report Preview-Slow methods report

Summary report
Slowest methods
Slowest 40 Percent

D226/05

Source File a:vfoxwfpdsamplesisolution\mairprg

57017504 Hits

Source File d\foxwipdsamplesisalution\eurapadyramicfarmatting scx

Total
method time
41B4B146
3.161206

Method

Frmsalutionlcammardl Click

Class
Frmsalutionl.commardl

Trmsolutionlcommandz Click Trmsolutionl.commandz

Source File d:roxuwrpssamplesisolutionytahoeaccess_assignvex
Total
method time
1153379
1153089

Method
rumfieldirumfieldValid rumfieldnumfield

rumfieldinumfieldamount_assign rumfieldinumfield

Source File dvfoxwdpdrifo_reportlistererucx

Total
methed time
1086137

Methed
_reporilistener_reporilistenerresetdatasession

Class
_repartlistener_repartlisterer

Figure 10. The Performance Add-in’s Slow Methods report is based on total method time.

All the source code for this add-in is in the folder with the add-in, so you can change its
behavior, if you wish. There’s a readme file that provides some more information.

[ discovered this add-in while preparing this session, but wished I'd noticed it sooner, as it
would have been quite useful when working with my client’s application.

Exploring coverage logs

The logs created by the Coverage tool are simply comma-delimited files. That makes them
easy to import into a table or cursor, after which you can do your own analysis of the data.
Listing 9 shows the first 26 lines from the example coverage log. Table 1 lists the fields

represented in the log.

Listing 9. A coverage log is a comma-delimited file.

.000046, ,main, 25,d: \fox\vfp9\samples\solution\solution

.000032,c_solutions,c_solutions.
.000012,c_solutions,c_solutions
.000012,c_solutions,c_solutions
.000170,c_solutions,c_solutions.
.000014,c_solutions,c_solutions.
.000014,c_solutions,c_solutions
.000007,c_solutions,c_solutions.

OO0 OOOO®

.000143, ,main,14,d: \fox\vfp9\samples\solution\solution.

init,16,d:\fox\vfp9\samples\solution\solution.
init,17,d:\fox\vfp9\samples\solution\solution.
.init,18,d:\fox\vfp9\samples\solution\solution
init,19,d:\fox\vfp9\samples\solution\solution.

app,1

.app,1
.000023, ,main, 26,d: \fox\vfp9\samples\solution\solution.

.056710, ,main,30,d: \fox\vfp9\samples\solution\solution.

app,1
app,1

init,9,d:\fox\vfp9\samples\solution\solution.vct,2
.init,11,d:\fox\vfp9\samples\solution\solution
.init,15,d:\fox\vfp9\samples\solution\solution

.vct,2
.vct,2
vct,2
vct,2
.vct,2
vct,2

Copyright 2025, Tamar E. Granor

Page 14 of 51



Can't this application go any faster?

0.000011,c_solutions,c_solutions.
0.000008,c_solutions,c_solutions.
0.000125,c_solutions,c_solutions.
0.000014,c_solutions,c_solutions.
.vct,3
0.000010,c_solutions,c_solutions.
.vct,3
0.000009,c_solutions,c_solutions.
.vct,3
0.000008,c_solutions,c_solutions.
.vct,3
.000009,c_solutions,c_solutions.
.vct,3
.000006,c_solutions,c_solutions.
.vct,3
.000011,c_solutions,c_solutions.
.vct,3
.000009,c_solutions,c_solutions.
.000007,c_solutions,c_solutions.
.000007,c_solutions,c_solutions.
.000109, c_solutions,c_solutions.

OO O®O®I O®SIO®O>Se

init,21,d:\fox\vfp9\samples\solution\solution.vct,2
init,22,d:\fox\vfp9\samples\solution\solution.vct,2
init,23,d:\fox\vfp9\samples\solution\solution.vct,2
getdirectory,4,d:\fox\vfp9\samples\solution\solution
getdirectory,5,d: \fox\vfp9\samples\solution\solution
getdirectory,6,d: \fox\vfp9\samples\solution\solution
getdirectory,7,d:\fox\vfp9\samples\solution\solution
getdirectory,10,d: \fox\vfp9\samples\solution\solutio
getdirectory,13,d:\fox\vfp9\samples\solution\solutio
getdirectory,15,d: \fox\vfp9\samples\solution\solutio
init,25,d:\fox\vfp9\samples\solution\solution.vct,2
init,26,d:\fox\vfp9\samples\solution\solution.vct,2

init,27,d:\fox\vfp9\samples\solution\solution.vct,2
init,31,d:\fox\vfp9\samples\solution\solution.vct,2

Table 1. Coverage logs contain these fields in this order. Note that the actual code is not included.

Field | Description

Execution time of the line, in seco

nds.

Class containing the executed line.

Object, method or procedure containing the executed line.

Line number within the method or procedure.

Fully-qualified name of the file co

ntaining the executed line.

O U | W=

Call stack level of the executed line.

To import the data, you simply need to create a table or cursor with the right fields, and use
APPEND FROM, as in Listing 10. Once the data is in a cursor, you can use VFP’s various

data-handling tools on it. What I do

most often is run queries to identify methods or

individual lines of code that deserve my attention.

Listing 10. Importing coverage data to a cursor is easy.

CREATE CURSOR cov ;

( nTime N(12, 6), ;
cClass c(39), ;
cObj c(60), ;
nLine i, ;
cFile c(60), ;
cStack i)

APPEND FROM GETFILE() TYPE DELIMI

For example, the query in Listing 1
query in Listing 12 computes total

TED

1 finds the 100 lines that were executed most often. The
time per method and sorts it into descending order; I

use it to identify methods I should look at first when optimizing.

Copyright 2025, Tamar E. Granor

Page 15 of 51



Can't this application go any faster?

Listing 11. Run this query against the imported coverage log to find the lines executed most often.

SELECT COUNT(*) AS nCnt, cClass, cObj, nLine, cfile ;
FROM cov ;
GROUP BY cClass, cObj, nLine, cfile ;
ORDER BY nCnt DESCENDING ;
TOP 100 ;
INTO CURSOR csrMostTimes

Listing 12. This query of the coverage data computes the total time spent in each method and sorts it with
the longest first.

SELECT SUM(nTime) AS nTotalTime, cClass, cObj, cfile ;
FROM cov ;
GROUP BY cClass, cObj, cfile ;
ORDER BY nTotalTime DESC ;
INTO CURSOR csrMethodTime

ExploreLog.PRG, included in the materials for this session, includes the code to import the
log, the two queries shown above, and a few other queries I've found useful.

An alternative profiler

One of the biggest benefits of the separation of creation of coverage logs from analysis of
the logs is that you can substitute a totally different tool to process a coverage log. I'm
aware of only one such tool. Created by Martina Jindrovj, it’s called CVP and it’s available at
http://gorila.netlab.cz/cvp.html.

To install, you download this tool and unzip it into a folder. Note that CVP comes with
localization for Czech, English, French, Russian and Slovak. To specify one of those
languages, double-click the appropriate .REG file. (I skipped this step and CVP defaulted to
English for me. [ don’t know whether that’s an overall default, or if it looked at the language
for my Windows installation.)

To use CVP, just run CVP.EXE. When it opens, all you have is an empty window, but unlike
most free utilities, this one comes with a Help file that’s integrated into the tool. (Note that
the actual Help content is partly in English and partly in what I think is Czech. In addition,
in my environment, some Help topics didn’t scroll properly, so I couldn’t see anything
below whatever fit on my screen.)

You can substitute this tool for the built-in coverage profiler by setting the system variable
_Coverage to point to CVP.EXE. Then, when you choose Coverage Profiler from the menu,
CVP runs. In my tests, however, when I did that, I couldn’t switch back and forth between
CVP and the VFP window.

To begin working with a coverage log, choose File | New from the menu and point to the log
file. The log file is opened and analyzed and you're prompted to point to any projects it
can’t find (as in Figure 11, which shows the list of such projects for our example log); this
allows you to deal with any path differences.

Copyright 2025, Tamar E. Granor Page 16 of 51


http://gorila.netlab.cz/cvp.html

Can't this application go any faster?

List of projects @
Ipplication Project -~
d: \fox \wip9'samples\solution\solutiyd: \fox\wipSsamples\solution's] + |,

__|ds\fox\wfpSireportbuilder.app D:'Fox'n,\a'FPQ'n,Tools'p(source'n,VF;,

_Md:\foxvfpSireportpreview.app D:'Fox'n,ﬂFPQ'n,TooIs'p(source'n,VF; .

d:\fox'\wipS'\coverage. app D: \Fox\WFPS Tools \ksource Wl w ||

4 1 2
| 0K | | Cancel |

Figure 11. Use this dialog to deal with path differences between the installation that created the log and the
development environment in which you’re running CVP.

If there are still individual items for which source can’t be found, the list of projects is
followed by a list of modules that need to be located, as shown in Figure 12.

List of modules @
Module Location of module -
¥ frxsetup.prg ..
=
] T 3
[ l | Cancel |

Figure 12. This dialog lets you locate individual items that CVP can’t find.

Once you've given CVP as many hints to where things are located as you can, the main
analysis window opens, as in Figure 13. (I found it makes sense to enlarge that window
somewhat, as several columns of the main grid are hidden in this figure. Additional
screenshots will show the enlarged window.) On the Analysis tab, indicate what code
you're interested in, based on how long it took to run or how often it ran. You can specify
thresholds for both individual lines and for entire methods and procedures. Once you've
made your choices, click the Analyze button. Figure 14 shows the Analysis tab after
specifying methods and procedures that took more than 1 second or executed more than
100 times.

Copyright 2025, Tamar E. Granor Page 17 of 51



Can't this application go any faster?

€] cvp File3 E=H EER ™5
| History || Sources ” Statistics |
Row
[CExecution tme I below @) above ) between 1.000000 |s
[ 1otal Sort: () ascending (@) descending [¥]First... 0%
[|Execution count () below (@) above () between 1
Sort: (") ascending @) descending [¥]First... 0%
Method Procedure
[]Execution tme 1 / below @) above () between 1.000000 |s
[[Total Sort: (") ascending @) descending [#]First... =
[C] Execution count (7 below @ above (7] between 1
Sort: () ascending (@) descending [#]First... 0% =EA
Method/Procedure Countl Timel Average timel % of |
<« | I | 3

Figure 13. This is the main analysis window for CVP. You use it to indicate what code you're interested in.

£ cvpFile3 E=5 EoE =%
Analysis |Histor\-I ” Sources ” Statistics |
Row
| |Execution time () below (@ above () between 1000000 |s
[ Total Sort: (")ascending (@ descending [¥]First... 0%
[[JExecution count () below @ above () between 100
Sort: ()ascending (@) descending [#]First... 10 %
Method/Procedure
[#]Execution tme () below (@ above () between 1.000000 |5
[ Total Sort: (") ascending (@) descending [¥IFirst... 04
[#]Execution count (7 below @ above (~between 100
Sort: ()ascending (@) descending [#IFirst... 105
Method/Procedure CountI TimeI Average time | % of ... | Row number | Row I A Ord. =
main 157.917737 99.9... 1M
dynamicformatting.command1.click 41.848146 26.4... 2
frupreviewproxy.show 15.722449 9.9... 3
dynamicformatting.command2.click 3.161206 2.0... 4
aa_fun.cmdvalue.click 2452316 1.5... 5
aa_fun.cmdcolor.click 2.061353 1.3... 6=
aa_fun.this_access 1.488173 0.9... 7
aa_fun.cmdcollection1.click 1.269052 0.8... 3
numfield.valid 1.153379 0.7... 9
numfield.amount_assign 1.153110 0.7... 10
_reportlistener.render 4300 1.447550 0.000337 0.9... 11
effectslistener.EvaluateContents 4180 20.926430 0.005006  13.2... 12
effecthandler.EvaluateExpression 1660 0.027371 0.000016  0.0... 13
_reportlistener.resetdatasession 871 1.355379 0.001556 0.8... 14
_reportlistener.beforeband 860 2.216394 0.002577  1.4.. 15
< | 1 | »

Figure 14. The Analysis tab of CVP lets you specify which rows and/or methods and procedures you want to
look at.

Copyright 2025, Tamar E. Granor Page 18 of 51




Can't this application go any faster?

The History tab (see Figure 15) shows the code from the Call Stack point of view. The left
pane is a treeview of the call stack. Click on an item there to show the relevant code in the
right pane. A yellow background means that the line calls another routine; you can double-
click to switch to that routine. If there’s more than one call to the routine, a dialog appears
to let you indicate which call you're interested in.

£ D:\Writing\Confs\SWFox\SWFox2015\Optimization\Code\SOLCOVER.CVP (o =] =]

Analysis I History |Snurces ” Statistics |

E-% main numfield. valid

5% d icf i Row Count First Average ~
ynamicrarmatting.commm 7y 1 1 1153378 1153379 THIS Zmount — THIS Value
& numfield.valid

-+ coverage

s

1 F

Time of all rows: 157.860770 s f1.153379 5 - (156, 707391 5)
Time total sum of all selected rows:
Percentage: 0.730298 %

Figure 15. The History tab is organized based on the Call Stack. The right pane shows the actual data from the
log file for the selected routine.

The Sources tab (Figure 16) is organized based on source code files. The left pane is a
treeview of code files used in the log. The right pane shows the code for the selected item.
The dropdown and spinner at the top of the right pane lets you indicate whether to show
data for all calls to the routine, or for a specific call.

Copyright 2025, Tamar E. Granor Page 19 of 51




Can't this application go any faster?

E| D:\Writing\ Confs\SWFox\SWFox2015\Optimization\Code\SOLCOVER.CVP

Analysis ” History | Sources |St3h'sh'cs |
20O d:\fox\wfp9\samples\soluti man -
Y Call from: | Event... [=] spin: 1%
ol d:\foxiwfpg\samples\soluti Row Count First Average -
B d:\fox\vips\samples\soluti B 1 S S A APPSR
. B d:\foxvFp9\samples\soluti B 2 : Main Progzam for Solution.APR
7 B8 d:\fox\wfp9\samples\soluti — i . Semple Rgplicetion
197 d:\foxivfpg\reportbuilder.: 0 5 * Copyright (e} 1930 - 1336 Microsoft Corp.
]; System events L BE 5 * 1 Microsoft Way
) frxsetup.prg 3 7 * Bedmond, WA 58052
7-0 d:\fox\wfpQitools\xsource), : 8 *
- 01 d:\fox\vFpa\tools\xsource\, 7 g ke
5B d:\fox\wfpd\samples\soluti _ 0 E
-8 effectdlistener H 11 : Change The defsult directory if run from the Project manager
=" usereffecthandler B i; and solution.sex cannot be found
-4 dynamicforecoloreffect | 14 I 0000143  0.000143 IF IFILE("selutien.sex’)
=" effecthandler W 15 cCurrentProcedure = S¥S(1g,1)
- @ EvaluateExpression W 16 nPathStart = AT(":",cCurrentProcedure)- 1
Ll d:\FoxwFpa\fc_reportliste : 17 nLen0fPath = RAT("\", cCurrentProcedure) - (nPathStart)
== _reportlistener B 18 SET DEFAULT TC (SUBSTR(cCurrentProcedure, nPathStart, nLenofPath))
@ init _ 19 ENDIF
- @ appname_assign = o
& outputtype_assign B 21 * Zsvablish e globsl error handlez.
22 * The error events associated with cbjects
- & listenertype_assign 0 23 + take precedence over ON ERROR routines.
- % loadreport m 24
% dearerrors N 5 1 0.000046  0.000046 cOldError = ON{"ERROR™)
- § setfrxdatasessioner Tl % 1 0.000023  0.000023 ON ERR0R DO SolutionfrrHandle -
% setfrxdatasession 4 L
-~ @ resetdatasession Time of all rows: 157.917737 5
% beforereport T Time total sum of all selected rows:
J ul D Percentage: §9.990497 %

Figure 16. The Sources tab organizes the code based on its location.

The Statistics tab (Figure 17) lets you generate some overall statistics for your log. To do
so, click the Read button. Among other things, it shows the line and the routine executed
most often, and the line and the routine that took the most time; you can click the arrow

next to any of those to jump right to the relevant code in the Sources window.

Copyright 2025, Tamar E. Granor

Page 20 of 51



Can't this application go any faster?

£ DAWriting\Confs\SWFox\SWFox2015\0ptimization\Code\SOLCOVER.CVP =N R

Analysis ” History ” Sources |

Read @I @I

List and number of sources: The first level of nesting: 1

Source type | Cour = Maximum level of nesting: 10
"= Class 25| = Total observation time: 157.932745
"2 Member of dass/object 30

% Procedure 28

% Method 160 -

4 111 P

The most calling row: Count: In method/procedure:
IF NOT ISNULL(THIS, Successor) 43004 | _reportiistener render
The most time-consuming row: Time: In method fprocedure:
READ EVENTS 157.8607705 |main

The most caling method/procedure: Count:

Y &

+

_reportistener, render 4300¢
The most time-consuming method/procedure: Time:
main 157.917737 3

3]

Figure 17. The Statistics page gives you basic information about your coverage log.

VFP’s native Coverage Profiler takes a long time to open a large log file. CVP allows you to
store its initial conversion of the log to a table (though it's not the same table you'd get
using APPEND FROM as described in “Exploring coverage logs,” earlier in this document),
so that when you want to work with the same file again, the initial processing can be
skipped. The file has a CVP extension; you use File | Open to read it in when you re-open
CVP.

[ haven’t worked much with CVP, but I certainly can see situations in which it would be
useful. There are also changes I'd like to see, especially the ability to set font sizes, as many
of them are small for my aging eyes. Despite that, 'm glad to have another tool in my
optimization toolbox.

Checking query optimization

When you talk about optimizing Visual FoxPro code, one of the first things people tend to
mention is Rushmore, the technology that makes table and cursor operations so fast. While
there’s no way to directly check the use of Rushmore on Xbase commands, VFP includes a
pair of functions that let you see how SQL SELECT, UPDATE and DELETE commands are

being optimized. SYS(3054) collects optimization information and SYS(3092) lets you send
that information to a file.

SYS(3054), also known as SQL ShowPlan, does the heavy lifting here. Its syntax is shown in
Listing 13. The key parameter here is nSetting; Table 2 shows the accepted values.
Omitting the nSetting parameter returns the current setting (as a string).

Copyright 2025, Tamar E. Granor Page 21 of 51




Can't this application go any faster?

Listing 13. SYS(3054) returns information about how Rushmore is optimizing SQL commands.
cSetting = SYS(3054 [, nSetting [, cOutputvar ]])

Table 2. The value you specify for nSetting determines the output SYS(3054) produces.

Value | Meaning

0 Turn off SQL ShowPlan

1 Turn on SQL ShowPlan for filters only.

2 Turn on SQL ShowPlan for filters only and include the original SQL command in the output.

11 Turn on SQL ShowPlan for filters and joins.

12 Turn on SQL ShowPlan for filters and joins and include the original SQL command in the output.

Basically, there are two pairs of choices: what to test and whether to include the original
command. Other than for demos, I've never found a reason to look at optimization only for
filters; [ always use filters and joins. Similarly, I almost always include the SQL command in
the output. So my most frequent choice for nSetting is 12.

The cOutputVar parameter is a little tricky (and, with the addition of SYS(3092) in VFP 9,
almost obsolete). By default, SQL ShowPlan results are sent to the active window. When
you pass the cOutputVar parameter, the results are stored only in the specified variable
and not sent to the active window.

The tricky part is that you pass the name of an existing variable into which the SQL
ShowPlan output is stored, not the variable itself. Listing 14 shows the wrong way and the
right way to pass this parameter. (The reason it works this way is that VFP’s built-in
functions can’t accept parameters by reference, only by value.)

Listing 14. You pass the name of the variable in which to store results to SYS(3054), not the variable itself.
LOCAL c30540utput

* This doesn’t work.
SYS(3054, 12, c30540utput)

* This works
SYS(3054, 12, “c30540utput”)

Listing 15 shows SYS(3054) at work; it’s included in the session materials as
Simple3054.prg. Figure 18 shows the output that’s stored in c30540utput (somewhat
reformatted to fit the page). See the next section, “Understanding SQL ShowPlan results,” to
learn what the output tells you. It’s worth noting that SYS(3054) also shows results from
USEing a local view. However, in that case, it doesn’t show the query itself, even if you pass
an appropriate value for nSetting. (In fact, the query in Listing 15 is a reformatted version
of the query that defines the Northwind view product_sales_for_1997. An alternate version
of the code that opens the view rather than just running the query is included in the session
materials as View3054.prg.)

Copyright 2025, Tamar E. Granor Page 22 of 51



Can't this application go any faster?

Listing 15. Wrap the query you want to test with calls to SYS(3054).
OPEN DATABASE HOME(2) + "Northwind\Northwind"
LOCAL c30540utput

SYS(3054, 12, "c30540utput")
SELECT Categories.categoryname, Products.productname, ;
SUM( (Orderdetails.unitprice*Orderdetails.quantity* ;
(1-Orderdetails.discount)/100)*100) AS productsales;
FROM Categories ;
JOIN Products ;
ON Categories.categoryid = Products.categoryid ;
JOIN Orders ;
JOIN OrderDetails ;
ON Orders.orderid = Orderdetails.orderid ;
ON Products.productid = Orderdetails.productid;
WHERE Orders.shippeddate BETWEEN {~1997/01/01} AND {~1997/12/31};
GROUP BY Categories.categoryname, Products.productname ;
INTO CURSOR csrSales1997

SYS(3054, 0)

SELECT Categories.categoryname, Products.productname,

SUM ( (Orderdetails.unitprice*Orderdetails.quantity* (1-Orderdetails.discount)/100)*100) AS productsales
FROM Categories JOIN Products ON Categories.categoryid = Products.categoryid JOIN Orders

JOIN OrderDetails ON Orders.orderid = Orderdetails.orderid ON Products.productid = Orderdetails.productid
WHERE Orders.shippeddate BETWEEN {~1997/01/01} AND {~1997/12/31}

GROUP BY Categories.categoryname, Products.productname INTO CURSOR csrSalesl997

Rushmore optimization level for table categories: none

Rushmore optimization level for table products: none

Using index tag Shippeddat to rushmore optimize table orders

Rushmore optimization level for table orders: partial

Rushmore optimization level for table orderdetails: none

Joining table categories and table products using index tag Categoryid

Joining table orders and table orderdetails using index tag Orderid

Joining intermediate result and intermediate result using temp index

Figure 18. SYS(3054) output shows the query first (if you pass 2 or 12 for nSetting) and then the
optimization results.

Beyond the unusual way of passing it, the cOutputVar parameter has a major limitation. It
stores the SQL ShowPlan only for the most recent SQL command. That is, if you turn SQL
ShowPlan on and then run code that includes multiple SQL commands, when you check the
specified variable, it contains the output only for the last of those commands.

The SYS(3092) function was added in VFP 9 to provide a better solution. It lets you specify
a file in which to store SQL ShowPlan results. The syntax for SYS(3092) is shown in Listing
16. The second parameter, cFileName, is the path and name of the file in which to store the
results. Pass the empty string for cFileName to stop sending results to the specified file.

Listing 16. SYS(3092) lets you send SQL ShowPlan output to a file.

SYS(3092 [, cFileName [, 1lAdditive]])

Copyright 2025, Tamar E. Granor Page 23 of 51



Can't this application go any faster?

Listing 17 (included in the materials for this session as Simple3054ToFile.PRG) shows the
same query as the previous example, but this time, the results are sent to a file called
Optimization.txt. The file contents (identical to the previous output) are shown in Listing
18. Obviously, this approach is much more useful for testing optimization inside an
application than sending the output to the active window or a variable. Be aware that,
when using SYS(3092), you’ll normally want to pass a variable to SYS(3054) anyway, as in
the example; otherwise, the output is sent to both the file and the active window.

Listing 17. Put calls to SYS(3092) around the SYS(3054) calls to send SQL ShowPlan output to a file.
OPEN DATABASE HOME(2) + "Northwind\Northwind"
LOCAL c30540utput

SYS(3092, "Optimization.txt")
SYS(3054, 12, "c30540utput")
SELECT Categories.categoryname, Products.productname,;
SUM( (Orderdetails.unitprice*Orderdetails.quantity*
(1- Orderdetails.discount)/100)*100) AS productsales;
FROM Categories ;
JOIN Products ;
ON Categories.categoryid = Products.categoryid ;
JOIN Orders ;
JOIN OrderDetails ;
ON Orders.orderid = Orderdetails.orderid ;
ON Products.productid = Orderdetails.productid;
WHERE Orders.shippeddate BETWEEN {~1997/01/01} AND {~1997/12/31};
GROUP BY Categories.categoryname, Products.productname ;
INTO CURSOR csrSales1997

SYS(3054, 0)
SYS(3092, "")

Listing 18. Wherever you send SQL ShowPlan output, you get the same results.

SELECT Categories.categoryname, Products.productname,
SUM((Orderdetails.unitprice*Orderdetails.quantity*(1-Orderdetails.discount)/100)*100)
AS productsales FROM Categories JOIN Products ON Categories.categoryid =
Products.categoryid JOIN Orders JOIN OrderDetails ON Orders.orderid =
Orderdetails.orderid ON Products.productid = Orderdetails.productid WHERE
Orders.shippeddate BETWEEN {~1997/01/01} AND {~1997/12/31} GROUP BY
Categories.categoryname, Products.productname INTO CURSOR csrSales1997
Rushmore optimization level for table categories: none

Rushmore optimization level for table products: none

Using index tag Shippeddat to rushmore optimize table orders

Rushmore optimization level for table orders: partial

Rushmore optimization level for table orderdetails: none

Joining table categories and table products using index tag Categoryid
Joining table orders and table orderdetails using index tag Orderid
Joining intermediate result and intermediate result using temp index

Copyright 2025, Tamar E. Granor Page 24 of 51



Can't this application go any faster?

Understanding SQL ShowPlan results

The information provided by SYS(3054) tells you what order operations were performed in
(the order shown in the result) as well as which index tags were used to optimize those
operations. As the parameters to the function indicate, you can divide the information into
two groups, that related to filters and that related to joins.

Two kinds of lines in the output represent filters. Each line that begins “Rushmore
optimization level” gives you an overall result for filtering of the specified table. The result
can be “none,” “partial” or “full.” A result of “none” can indicate either that the table wasn’t
filtered in the query or that there were no appropriate tags to use in filtering that table. In
Listing 18, the result is “none” for Categories, Products and OrderDetails because none of
them is filtered (that is, no fields from those tables appear in the Where clause).

For each tag used to filter a table, the output includes a line that begins “Using index tag”
and then indicates which tag and which table. In the example, there’s only one such line,
indicating that the Shippeddat tag of Orders was used for optimization. That's not
surprising, since the query’s WHERE clause filters on the ShippedDate field.

What may be surprising is that the summary line for the Orders tables says “partial” rather
than “full.” After all, the only filter for Orders is on ShippedDate and there’s a tag for that.
But what you can’t see here is that I ran the query with SET DELETED ON; that adds an
implied filter of NOT DELETED() for every table. Since there’s no index tag on DELETED(),
Orders is only partially optimized. If  SET DELETED OFF and run the example again, that
section of the output changes to Listing 19. The question of whether to add a filter on
DELETED() for each table is complex; it’s discussed later in this paper in the section “The
DELETED() dilemma and binary tags.”

Listing 19. Issuing SET DELETED OFF removes an implied filter of NOT DELETED() for every table in a query,
allowing the query to be fully optimized

Using index tag Shippeddat to rushmore optimize table orders
Rushmore optimization level for table orders: full

Of course, you can have more than one optimizable filter for a table. With DELETED OFF,
the query in Listing 20 produces the SQL ShowPlan results in Listing 21.

Listing 20. This query has multiple filters on the Orders table.

SELECT CompanyName, Orders.OrderID, OrderDate, Quantity, Productname ;
FROM Customers ;
JOIN Orders ;
ON Customers.CustomerID = Orders.CustomerID ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
JOIN Products ;
ON OrderDetails.ProductID = Products.ProductID ;
WHERE OrderDate between DATE(1998, 4, 1) AND DATE(1998, 6, 30) ;
AND ShippedDate between DATE(1998, 4, 1) AND DATE(1998, 6, 30) ;
AND UPPER(Customers.City) IN ("LONDON", "MADRID", "PARIS") ;

Copyright 2025, Tamar E. Granor Page 25 of 51



Can't this application go any faster?

INTO CURSOR csrResult

Listing 21. When there are multiple filters on a given table, there may be more than one optimization of that
table. Here, both filters on Orders can be optimized.

Using index tag City to rushmore optimize table customers

Rushmore optimization level for table customers: full

Using index tag Orderdate to rushmore optimize table orders

Using index tag Shippeddat to rushmore optimize table orders

Rushmore optimization level for table orders: full

Rushmore optimization level for table orderdetails: none

Rushmore optimization level for table products: none

Joining table customers and table orders using index tag Customerid
Joining table products and table orderdetails using index tag Productid
Joining intermediate result and intermediate result using temp index

Not surprisingly, the remaining lines in SQL ShowPlan output, the ones beginning with
“Joining” report the optimization of joins. The tag mentioned always belongs to the table
listed second in that line so, for example, the line from Listing 18 that reads:

Joining table orders and table orderdetails using index tag Orderid

indicates that the Orderid tag of OrderDetails was used to join that table with Orders. In
general, if possible, Rushmore uses a tag from the larger table. (See the next major section
of this paper, “The Rushmore engine,” to understand why.)

The SQL ShowPlan output also shows you the order in which joins are performed. In the
example from Listing 18, Categories and Products are joined. Then, Orders and
OrderDetails are joined. Finally, the results of those two joins are joined. In this case, that's
pretty much the order specified in the query. However, it’s not at all unusual for Rushmore
to choose to perform joins in a different order than specified. For example, the join section
shown in Listing 21 shows that Customers and Orders are joined first, which is the first
join in the query as written. But then Products and OrderDetails are joined, and then the
two intermediate results are joined. In each case, the initial joins involve joining a large
table with a small one, so the index from the larger table is used.

Sometimes, the order changes, even without using two separate intermediate tables. That’s
the case for the query in Listing 22; the join portion of the SQL ShowPlan output is shown
in Listing 23. Since Customers, Employees and Shippers are all quite small, it’s hard to
guess why Rushmore chose to join Employees to Orders first. However, it’s not at all
surprising that it chose to build a temporary index on that result when joining with the
three-record Shippers table.

Listing 22. The order you specify for joins isn’t always the order in which they’re performed.

SELECT OrderID, OrderDate, ;
Customers.CompanyName AS Customer, ;
Employees.LastName, ;
Employees.FirstName, ;
Shippers.CompanyName AS Shipper ;

Copyright 2025, Tamar E. Granor Page 26 of 51



Can't this application go any faster?

FROM Orders ;
JOIN Customers ;
ON Orders.CustomerID = Customers.CustomerID ;
JOIN Employees ;
ON Orders.EmployeelD
JOIN Shippers;
ON Orders.ShipVia = Shippers.ShipperID ;
WHERE BETWEEN(OrderDate, {~ 1997-2-1}, ;
{~ 1997-2-28}) ;
ORDER BY OrderDate DESC, LastName ;
INTO CURSOR csrOrderInfo

Employees.EmployeelD ;

Listing 23. This SQL ShowPlan output for the query in Listing 22 shows that Rushmore chooses what it
considers the best order to join tables, not necessarily the order you specify.

Joining table employees and table orders using index tag Employeeid
Joining table shippers and intermediate result using temp index
Joining intermediate result and table customers using index tag Customerid

The Rushmore engine

One of the keys to optimizing VFP code is understanding Rushmore, the optimization
approach used by the database engine. Rushmore applies to any Xbase command that has a
FOR condition, and to the SQL SELECT, UPDATE and DELETE commands.

Rushmore works by using index tags to decide which records to include in a result. For
each optimizable condition (defined in the next section “Having the right tags”), it creates a
bitmap showing which records meet the condition, and then it combines all those bitmaps
to determine which records actually have to be read. Any non-optimizable conditions are
then checked against each remaining record.

Having the right tags

Because Rushmore uses index tags, the first key is having the right tags. For Rushmore to
be applied, you need an index tag that exactly matches an expression. That expression can
appear on either side of the comparison involved (though earlier in FoxPro history, the
optimizable expression had to be on the left-hand side of the comparison). The key point is
that the expression and the index key must be exactly the same. So, for example, if you have
a tag on UPPER(Company), your comparison must use UPPER(Company), not Company for
that tag to be used for optimization. For a tag on a more complex expression, like
UPPER(cLast + cFirst), to be used, the comparison must include the whole expression.

Rushmore cannot use filtered indexes (that is, indexes created with the FOR clause) nor can
it use tags that include the NOT operator.

The DELETED() dilemma and binary tags

It used to be an article of faith that, if your application ran with DELETED ON, every table
should have a tag whose key was the DELETED() function. The practice became common
soon after Rushmore was added, when people noticed that doing so could speed up some

Copyright 2025, Tamar E. Granor Page 27 of 51



Can't this application go any faster?

very slow commands. However, later experiences demonstrated that in some situations, an
index on DELETED() actually slows things down. Here’s why.

In general, the portion of an index file that must be read to find out which records match a
condition is much smaller than the actual data, so looking at tags reduces the amount of
data that has to be pulled into memory.

But a tag on DELETED() has only two possible values, and in most situations, the values are
not evenly distributed; there are far fewer deleted records. So, the portion of the index file
that represents the NOT DELETED() case can be quite large and pulling it into memory can
be slow.

Thus, for large tables in a networked situation, a tag on DELETED() is more likely to slow
things down than speed them up. Exactly what “large” means in this context depends on a
number of factors, including available memory, network speed, and so forth.

An additional factor was added in VFP 9 with the ability to create binary index tags. These
tags can be used only for index expressions that have exactly two possible values; they're
compressed considerably. In one test, I created a table with 1,000,000 records. Creating a
regular index tag on DELETED() resulted in a file of 3,205,632 bytes. A binary index tag on
DELETED() for that table was 135,168 bytes. Clearly, the use of a binary tag changes the
cutoff between cases where indexing on DELETED() makes sense and those where it
doesn’t. (Be aware that binary tags can be used only for optimization, not for searching.)

Making it faster in the first place

In general, it’s good advice not to worry too much about optimization until you get the code
working and see which are the slow parts. However, there are some best practices that will
make your code faster in the first place. Before we look at the process I used to speed up
my client’s application, let’s examine a few of those practices.

Extra code in loops

One easy way to slow your application down is having code inside a loop that can be put
outside the loop. For example, if you need to set a variable to be used inside the loop, but its
value doesn’t change in the loop, you should set it before the loop. Similarly, if you need to
look something up and the look-up doesn’t change on each pass through the loop, do it
before the loop.

Listing 24 shows a program that demonstrates; it’s included in the materials for this
session as MinimizeLoops2.PRG. Here, the loop needs today’s date for a calculation. The
first version simply calls DATE() inside the loop. The second stores the value in a variable
and uses that in the loop. In my tests looping through the Employee table to compute each
age in each pass, [ was able to get through anywhere from 15% to 90% more passes by
storing the date to a variable.

Copyright 2025, Tamar E. Granor Page 28 of 51



Can't this application go any faster?

Listing 24. One way to speed things up is to make sure you're not doing anything repeatedly inside a loop
that you could do outside the loop.

* Compare speed with call to DATE() inside loop
* and outside

#DEFINE SECONDSTORUN 5
#DEFINE LOOPPASSES 5000

LOCAL nInLoopStart, nInLoopEnd, nOutLoopStart, nOutLoopEnd
LOCAL nInPasses, nOutPasses
LOCAL nAge, dToday

OPEN DATABASE HOME(2) + "northwind\northwind"
USE Employees

nInLoopStart = SECONDS()
nInLoopEnd = m.nInLoopStart + SECONDSTORUN
nInPasses = ©

DO WHILE m.nInLoopEnd > SECONDS()
* Now the loop that we're testing
nInPasses = m.nInPasses + 1

SCAN
nAge = DATE() - Employees.Birthdate
ENDSCAN

ENDDO

nOutLoopStart = SECONDS()
nOutLoopEnd = m.nOutLoopStart + SECONDSTORUN
nOutPasses = 0@

DO WHILE m.nOutLoopEnd > SECONDS()
* Now the loop that we're testing
nOutPasses = m.nOutPasses + 1

dToday = DATE()
SCAN

nAge = m.dToday - Employees.Birthdate
ENDSCAN

ENDDO

DEBUG
DEBUGOUT "With DATE() inside loop, " + TRANSFORM(m.nInPasses) + " passes."
DEBUGOUT "With DATE() outside loop, " + TRANSFORM(m.nOutPasses) + " passes."

The materials for this session include another example (MinimizeLoops.PRG) where a
calculation inside a loop needs the value of a field. While the speed improvement isn’t as
large as in the example above, it, too, benefits from grabbing the value once and using a
variable instead.

Copyright 2025, Tamar E. Granor Page 29 of 51



Can't this application go any faster?

Similarly, when loops are nested, be sure to put each line of code at the outermost level you
can.

Use MDots

Perhaps the most controversial best practice in VFP coding is preceding any reference to a
variable with “m.” (known as “MDot”). It’s necessary because when a variable and a field in
the current table have the same name, VFP assumes you mean the field (except in
situations where a field can’t be used, such as the left-hand side of an assignment
statement). However, many VFP developers use naming conventions that they believe
eliminate this conflict. (As you can presumably tell, I think that’s a weak argument.)

Performance, however, is another reason to use MDots. When variables are preceded by
MDot, VFP doesn’t have to even check whether a table is open in the current work area and,
if so, whether that table has a field of the same name. The more fields there are in that
table, the more MDots help.

[ tested by declaring and initializing two variables and then using them each in two lines of
code (the variables represent length and width of a rectangle, and the code computes
perimeter and area). In one case, the references to the variables are preceded by MDot; in
the other, they’re not. I put the calculations in a loop and tested to see how many times |
could perform them in a fixed period of time. I ran the test first with no table open in the
current work area, then with a table with five fields, and then repeatedly increasing by five
fields up to 200. The test code, included in this session’s materials as UseMDot.PRG, is
shown in Listing 25.

Listing 25. Prefacing references to variables with MDot speeds them up. The more fields in the table open in
the current work area, the more improvement you’ll see.

* Compare speed with and without mdot

#DEFINE SECONDSTORUN 5

LOCAL nCaselStart, nCasellLoopEnd, nCase2lLoopStart, nCase2LoopEnd
LOCAL nCaselPasses, nCase2Passes

LOCAL nLength, nWidth, nPerimeter, nArea

* Test multiple cases from no table open

* to table with many fields open.

* Store results in a cursor in a different workarea.

CREATE CURSOR csrMDotSpeeds (nFields N(3), nNoMDots I, nMDots I)
SELECT ©

LOCAL nFields, nField, cFieldlList

* Initialize variables for calculations
nLength = 27.3

nWidth = 13.7

FOR nFields = @ TO 200 STEP 5

Copyright 2025, Tamar E. Granor Page 30 of 51



Can't this application go any faster?

IF m.nFields <> ©
cFieldList = "'
FOR nField = 1 TO m.nFields
cFieldList = m.cFieldList + "cField" + TRANSFORM(m.nField) + " C(5), "
ENDFOR
cFieldList = TRIM(m.cFieldList, ", ")

CREATE CURSOR csrDummy (&cFieldList)
ELSE

SELECT ©
ENDIF

* Now do the test

nCasellLoopStart = SECONDS()
nCasellLoopEnd = m.nCasellLoopStart + SECONDSTORUN
nCaselPasses = ©

DO WHILE m.nCasellLoopEnd > SECONDS()
nCaselPasses = m.nCaselPasses + 1

nPerimeter = 2*nLength + 2*nWidth
nArea = nLength * nWidth
ENDDO

nCase2LoopStart = SECONDS()
nCase2LoopEnd = m.nCase2LoopStart + SECONDSTORUN
nCase2Passes = O

DO WHILE m.nCase2LoopEnd > SECONDS()
nCase2Passes = m.nCase2Passes + 1

nPerimeter = 2*m.nLength + 2*m.nWidth
nArea = m.nLength * m.nWidth

ENDDO
INSERT INTO csrMDotSpeeds VALUES (m.nFields, m.nCaselPasses, m.nCase2Passes)

IF m.nFields <> ©
USE IN csrDummy
ENDIF
ENDFOR

In my tests, with only five fields in the table, the MDot case was able to complete 2.5% to
7% more repetitions. As the number of fields in the table increased, the difference between
the two cases increased as well. With 35 to 50 fields, the MDot case completed 50% more
repetitions. Around 65 to 95 fields, the MDot case ran more than twice as many repetitions
in the same time. On one of my machines, 135 fields led to three times as many repetitions,
and by the end of the test, with 200 fields, it was close to four times as many. On my other
machine, at 200 fields, it was nearly 3 times as many repetitions. The key issue here was
that the code with MDots ran about the same number of repetitions regardless of the

Copyright 2025, Tamar E. Granor Page 31 of 51



Can't this application go any faster?

number of fields in the open table, while the code without MDots ran fewer and fewer as
the number of fields increased.

It’s worth noting that for this simple test, we're talking about millions of repetitions in five
seconds, so the difference in any one case is very small. But in an application, there are
likely thousands or tens of thousands of potentially ambiguous references to variables.
(The fairly simple program in Listing 25 has 23 such references, though the actual code
that's part of the test includes only four such references.)

Use the right loop

The loop construct you use has performance implications. As noted in “Collecting start and
end times,” earlier in this paper, FOR is about an order of magnitude faster than DO WHILE.
In addition, in most cases, SCAN is nearly twice as fast as DO WHILE for traversing a table.
(The program DoWhileVsScanFixedTime.PRG in the session materials demonstrates.)

A more interesting case is the FOR EACH loop for looping through arrays or collections.
Prior to VFP 8, there were only a few collections native to VFP, like the form's Controls
collection and the grid's Columns collection. Most of the collections you needed to deal
with, including some that appeared to be native (like the Projects and Files collections),
were actually COM objects. As a result, FOR EACH was designed to work with COM objects.
By default, the object it hands you each pass through the loop is a COM obiject.

In VFP 8, the Collection base class was added, giving us the ability to create our own native
collections. Suddenly, having FOR EACH provide COM objects caused problems. Those
objects didn't behave the way we expected. Not only that, but FOR EACH loops were slow.

The FOXOBJECT keyword was added in VFP 9; when you add it to FOR EACH, the objects
you're working with inside the loop are native VFP objects. Using FOXOBJECT, not only do
the objects behave as expected, but FOR EACH without FOXOBJECT takes about 10 to 30
times as long as FOR EACH with FOXOBJECT. The bottom line is that when working with a
native collection, you should always add FOXOBJECT to FOR EACH. UseFoxObject.PRG in
the session materials demonstrates.

Limit refreshes

About a decade after that original email, for a different client who has a vertical market
application, [ was working on converting forms that had originally been created in FoxPro
2.6 to native VFP forms. The application was built using a FP2.6 framework and we’d
adapted that framework for VFP.

My client’s customers were finding the VFP version to be slower than the FP2.6 version. We
expected a little slowness, partly because we’d made an architectural change that saved
child data as we went in parent-child forms rather than saving it all at once at the end. But
it wasn'’t just saves that were slow.

We knew that form refreshes were part of the problem. The FP2.6 application had used
SHOW GETS pretty liberally, and in the conversion, every SHOW GETS was changed to
ThisForm.Refresh(). In addition, code that had been part of the Show snippet in FP2.6 was

Copyright 2025, Tamar E. Granor Page 32 of 51



Can't this application go any faster?

mostly moved to a routine called on every form refresh. Beyond that, some controls had
code in their Refresh method to do things like determine whether we should modify the
caption of a button. (For example, some buttons in this application have an ellipsis added to
their caption, if there’s underlying data.) So, we knew that refreshes were expensive.

Over a year or more, | found a number of ways to speed things up, including providing a
mechanism to prevent refreshes in the middle of an operation. (Basically, we added a flag
we could set at the form level to short-circuit the refresh method.)

But we finally discovered the real culprit when my client used Process Monitor (ProcMon)
on a particularly slow form. We saw that a particular table was being accessed tens of
thousands of times in one case, where in the FP26 application, it was accessed only about
1000 times in the same situation.

[ confirmed that the only code that addressed that table and ran in that particular case was
the code that determined whether to add an ellipsis to a particular button. To confirm that
this code was the culprit, we put RETURN at the top of the relevant method and found the
speed issue went away.

Obviously, that wasn’t a solution we could live with, but knowing that, [ used the Event
Tracker to see exactly what was happening in that case. We had code in the Refresh method
of the form and of almost every class in the form class hierarchy. What I found was that the
Refresh method for every control on the form was firing at every level in the class
hierarchy that had code in Refresh, as well as when the built-in Refresh ran. In this case, it
meant that every time we refreshed the form, the code to determine whether to put an
ellipsis on the button (and all the other code in the Refresh method of controls) was firing
four times: once for the built-in method, once for our “base” form class, once for the class
the form was actually based on, and once for the form itself.

I'd never thought of Refresh as a method that needed NODEFAULT to be paired with
DODEFAULT(), but when [ added NODEFAULT at each level of the hierarchy, we cut down
to one call to each control’s Refresh method, and the form speeded up considerably. Even
better was that other forms also speeded up because we’d done this in the “base” form
class and the class on which most of our data entry forms were based.

To demonstrate, I created a very simple “base” form class (frmBase) that has no code,
except for what's shown in Listing 26 in the Refresh method. It has one custom property,
|PreventExtraRefreshes, added to make it easy to demonstrate this issue (rather than
having to build two separate class hierarchies).

Listing 26.

DEBUGOUT PROGRAM()
DODEFAULT ()

IF This.lPreventExtraRefreshes
NODEFAULT
ENDIF

Copyright 2025, Tamar E. Granor Page 33 of 51



Can't this application go any faster?

* Usually there'd be some actual code here

[ created a subclass, frmDataEntry, which has no changes from the base class, except for a
slightly different comment in Refresh; it'’s shown in Listing 27.

Listing 27. The Refresh method in frmDataEntry is identical to that in frmBase, except for the comment. In
real code, of course, they’d be different.

DEBUGOUT PROGRAM()
DODEFAULT ()

IF This.1lPreventExtraRefreshes
NODEFAULT
ENDIF

* Other code here to do what we need in data entry forms

[ also created a “base” command button class (cmdBase) that has the ability to add an
ellipsis to the button’s caption under some circumstances. The class has a custom property,
cEllipsis, which contains “...”; while my client wants that character, using a property makes
it easy if we want to show some other characters on a particular button. There are also two
custom methods, HasData and Has Ellipsis. HasData is abstract at this level; it just returns
.F. HasEllipsis, shown in Listing 28, checks whether the caption currently contains an
ellipsis or not.

Listing 28. The HasEllipsis method checks the button’s caption to see whether it currently ends with an
ellipsis.

* Does the caption end with an ellipsis?
LOCAL 11Ret

IF RIGHT(This.Caption, LEN(This.cEllipsis)) = This.cEllipsis

11Ret = .T.
ELSE

11Ret = .F.
ENDIF

RETURN m.1l1Ret

Finally, cmdBase’s Refresh method decides whether to add or remove the ellipsis from the
caption, as shown in Listing 29.

Listing 29. The button’s Refresh method checks whether we need to add or remove an ellipsis from the
button caption.

LOCAL 11lHasEllipsis

11HasEllipsis = This.HasEllipsis()
IF This.HasData()
IF NOT m.llHasEllipsis
This.Caption = This.Caption + This.cEllipsis

Copyright 2025, Tamar E. Granor Page 34 of 51



Can't this application go any faster?

ENDIF
ELSE
IF m.1lHasEllipsis
This.Caption = LEFT(This.Caption, LEN(This.Caption) - LEN(This.cEllipsis))
ENDIF
ENDIF

Once [ had these classes (and a very basic chkBase checkbox class), I created a form for the
demo. It’s shown in Figure 19.

Figure 19. To demonstrate the refresh issue, run this form with the Debugger open and click Refresh. Try it
again after checking the checkbox.

The form’s Refresh method contains the same code as in the two form classes’ Refresh
(except without a final comment). The Refresh button’s Click method calls
ThisForm.Refresh().

The Notes button’s HasData method randomly decides whether to add the ellipsis, using
the code in Listing 30. (The form’s Load method calls Rand(-1) to make sure we get
random values.) In my client’s application, where we use it, HasData typically contains a
query to see whether data of a particular sort exists.

Listing 30. This code in the Notes button’s HasData method means that about half the time, we show the
ellipsis.

* Ordinarily, the code here would go look somewhere

* to see whether there's relevant data. For this demo,
* we'll just use RAND() to decide whether there's data.
LOCAL 1Ret

1Ret = (RAND() > .5)

RETURN m.1Ret

Copyright 2025, Tamar E. Granor Page 35 of 51



Can't this application go any faster?

The Refresh method of the Refresh button contains just one line:

DEBUGOUT PROGRAM()

The Refresh method of the Notes button also issues DODEFAULT(); it's shown in Listing
31.

Listing 31. The Refresh method of the Notes button calls up the class hierarchy to produce the ellipsis, as
needed.

DEBUGOUT PROGRAM()
DODEFAULT ()

When you run the form with the Debugger open and click the Refresh button, you can see
the sequence of calls that occur in the Debug Output window. Figure 20 shows the result
when the checkbox is not checked. Each button’s Refresh method is called four times.
Figure 21 shows the result when the checkbox is checked and we issue NODEFAULT at
each level.

~RMTOOMANYREFRESHES REFRESH
~RMDATAENTRY REFRESH

-RMBASE REFRESH
-RMTOOMANYREFRESHES CMONOTES REFRESH
“EMTOOMANYREFRESHES CMDEEFRESH.REFRESH
~EMTOOMANYREFRESHES. CMDNOTES REFRESH
-RMTOOMANYREFRESHES CMDREFRESH REFRESH
“EMTOOMANYREFRESHES CMDONOTES REFRESH
-EMTOOMANYREFRESHES CMDREFRESH . REFRESH
-RMTOOMANYREFRESHES CMONOTES REFRESH
“EMTOOMANYREFRESHES CMDREFRESH REFRESH

Figure 20. If you don’t prevent it, the Refresh method of every control on the form fires at every level of the
form class hierarchy.

FRMDATAENTRY REFRESH

FRMBASE REFRESH

FEMTOOMANYREFRESHES CMONOTES REFRESH
FREMTOOMANYREFRESHES CMDREFRESH REFRESH

Figure 21. When you include NODEFAULT in the Refresh method of each form in the class hierarchy, each
control’s Refresh fires only once.

Taking out the slow parts

With a set of tools in place for measuring performance, and an understanding of VFP’s
Rushmore engine, [ was ready to tackle my client’s slow code. [ found four data files to
work with: one small, one medium, one large and one very large. My first step was adding

Copyright 2025, Tamar E. Granor Page 36 of 51



Can't this application go any faster?

code to log progress. Since the process of opening the data files has two phases (reading the
XML into DBFs and converting the DBFs to objects), I added logging as shown in Listing 32.
(The application’s AddToLogFile method time-stamps every line it logs.)

Listing 32. In order to determine whether my changes were having any effect, [ logged progress through file
opening in an existing log file.

goApp.AddToLogFile(" Start phase 1")
* Code to read XML into DBFs
goApp.AddToLogFile(" End phase 1")

* Some error-handling code

goApp.AddToLogFile(" Start phase 2")
* Code to convert DBF data to objects
goApp.AddToLogFile(" End phase 2")

With logging in place, I used the application to open each of the four data files twice and
computed the time for each phase in each case, using the timestamps from the log. I
recorded the initial sets of timing in the relevant bug. (My client used Bugzilla for bug
tracking; I tracked all progress in a single bug.) I created a simple ASCII table, as in Listing
33; as  made changes and retested, | was able to cut and paste this table into the bug and
update the second and third columns.

Listing 33. Give yourself a way to see whether changes you make result in better performance. Here, a simple
ASCII table records the results of timing tests.

== e e eeemeeeeeeeee—eea- +
| # of Nodes | Phase 1 | Phase 2|
| | (seconds) | (seconds) |
fmmmmmmmme e eemeeemeeeeeee—ee——ea- +
| 1 | 1 | 1 |
fmmmmmmmme e eemeeemeeeeeee—ee——ea- +
| 1 |1 | 1 |
T +
| 3 | 4 | 7 |
fmmmmmmmme e eemeeemeeeeeee—ee——ea- +
| 3 | 5 | 5 |
T +
| 8 | 16 | 26 |
fmmmmmmmme e eemeeemeeeeeee—ee——ea- +
| 8 | 15 | 24 |
T +
| 19 | 33 | 64 |
== eeeeeeemeeeeeceecceeeeeeoea- +
| 19 | 35 | 54 |
== eeeeeeemeeeeeceecceeeeeeoea- +
| 19 | 34 | 64 |
R e EE TR +

Copyright 2025, Tamar E. Granor Page 37 of 51



Can't this application go any faster?

[ also added a property, I0penCoverageOn, to the application object and wrapped most of
phase 2 of the process (for various reasons, a coverage log for phase 1 wasn’t likely to be
helpful) as in Listing 34.

Listing 34. This code lets me control whether to create a coverage log of the code I was trying to optimize.

IF goApp.lOpenCoverageOn
SET COVERAGE TO FORCEPATH("OpenCoverage.log", SYS(2023))
ENDIF

* Call to main phase 2 code

IF goApp.lOpenCoverageOn
SET COVERAGE TO
ENDIF

It's important to note that measuring speed for comparison and creating a coverage log are
mutually exclusive activities. Creating a coverage log slows the application down, so runs
with coverage logging on shouldn’t be compared to runs without it.

Unneeded code

Among the first changes [ made were ones that removed unnecessary code. While no one
intentionally puts extra code in, over time, some code can become unnecessary. While a few
such lines executing won'’t generally make much of a difference, executing unnecessary
code lots of times can make a difference.

My client’s application tracked a group of settings and included a timestamp for each to
indicate when it was last changed. When I looked carefully, I found that I was setting the
timestamp twice for each change: once explicitly in the same code that stored the new
value and again in an assign method for the setting. [ eliminated the update in the assign
method and saw a very small improvement.

Questioning best practices

My philosophy of coding is to make each line of code as independent of its environment as
possible. The client application that led to this paper strengthened my feelings about this
practice because it used several timers, so there was a chance of code running between any
two consecutive lines. So, for example, if [ had a SQL query, I couldn’t assume that I could
use _TALLY in the next line of code to find out how many rows were returned.

When I had to optimize the application, though, it turned out that some of what I
considered best practices because they reduced dependency resulted in slower code.

Creating objects

One way I like to make code independent is by using NewObject() rather than
CreateObject() to instantiate objects. Since NewObject() expects the class library as a
parameter, [ don’t have to worry about SET CLASSLIB (for classes contained in VCXs) or
SET PROCEDURE (for classes contained in PRGs).

Copyright 2025, Tamar E. Granor Page 38 of 51



Can't this application go any faster?

The code that converts from tables to objects instantiates hundreds or thousands of
objects, depending on the data file size. In the application, I'd been seeing slower
performance on the first network file opened after running the application, and some
speed-up thereafter. Replacing NewObject() with CreateObject() eliminated that penalty.

To test without all the complications of the client application, I created a simple set of
tables to represent students, departments and courses of a school. I generated data for
5,000 students; 2,000 classes in 20 departments; 1,000 instructors; and 50,000 many-to-
many records linking students to courses. (My “framework” for generating sample data is
described in detail in a paper on my website called “The Why and How of Test Data.”) [ then
created a set of business objects with methods that create collections of the various
entities. (This is purely for demonstration purposes. In most applications, it’s unlikely
you’d want to load all data into objects, rather than working with the tables themselves. My
client application was unusual in that loading all the data into objects up front made sense.)

When I changed the code to SET CLASSLIB and used CreateObject() instead of NewObject(),
performance improved by about a third. For example, on one run, the NewObject() code
took 18 seconds to instantiate all 58,020 objects and the corresponding collections, while
the CreateObject() version took 13 seconds.

The two versions of the classes are included in the materials for this session as BizObjs.VCX
and BizObjs2.VCX. The corresponding main programs that do the test are SchoolMain.PRG
and SchoolMain2.PRG. The database and its tables are included in a folder called School.

Finding the right record

Another area where I prefer to write environment-independent code is when looking up
one or a few records. In general, [ use SQL SELECT rather than SEEK, so that the only thing I
might need to restore is the work area. (In fact, I try to make my code independent of the
work area as well; see “Writing work area-agnostic code,” later in the document.)

My client application had a set of metadata tables and when converting from tables to
objects, we needed to look up information in the metadata for each setting (of which a large
data file may have over 10,000). My code for that look-up was something like that shown in
Listing 35, and was guaranteed to return a single record.

Listing 35. My original code used a query like this to extract meta-data.

SELECT Fieldl, Field2, Field3, Field4 ;
FROM MyMetaTable ;
WHERE MyMetaTable.iID = oSetting.iID ;
INTO CURSOR csrSettingInfo

[ modified the routine to use SEEK instead and then to directly address the fields of the
metadata table. The SEEK looks like Listing 36.

Copyright 2025, Tamar E. Granor Page 39 of 51


http://tomorrowssolutionsllc.com/ConferenceSessions/The%20Why%20and%20How%20of%20Test%20Data.pdf

Can't this application go any faster?

Listing 36. This SEEK and direct reference to the fields is much faster than extracting the data of interest with
SELECT.

SEEK oSetting.iID IN MyMetaTable ORDER iID

This was the single biggest improvement I was able to introduce during this process. |
wasn’t especially surprised that SEEK was faster, but I was surprised how much. Depending
on the size of the data file, the time to complete the whole process using SEEK was reduced
to anywhere from a quarter to a half of the time required with SELECT.

I created a routine to test the difference without all the overhead of my application. I also
tested SEEK two different ways, first with the work area and order set before the test and
then using IN and ORDER as part of the SEEK command. The results were striking. Both
versions using SEEK were about two orders of magnitude faster than the single-result
query. (When I tested this in 2015, I found the difference to be one order of magnitude. I'm
not sure what has changed in the interim.) Not surprisingly, the version that assumed the
right work area and index order was faster than the one that set it; in this case, it was about
30% faster. (See “Writing work area-agnostic code,” later in this document for a broader
look at the IN clause.) The test program is shown in Listing 37 and included in this
session’s materials as SELECTvsSEEK.PRG.

Listing 37. When you’re looking for a single record, SEEK is much faster than SELECT.

#DEFINE SECONDSTORUN 5
#DEFINE RECORDSTOFIND 500

LOCAL nCaselStart, nCasellLoopEnd, nCase2lLoopStart, nCase2LoopEnd
LOCAL nCaselPasses, nCase2Passes
LOCAL nCase3LoopStart, nCase3LoopEnd, nCase3Passes

** Declare variables needed for test
LOCAL nRand, iRecNo, nClass, aInstructorIDs[RECORDSTOFIND]
LOCAL nClassCount, iInstructorID, cInstructor

** Do set-up work for the test
* Seed the random number generator
RAND(-1)

* Grab a bunch of instructor IDs from the Classes database
OPEN DATABASE school\school

USE Classes

nClassCount = RECCOUNT("Classes")

FOR nClass = 1 TO RECORDSTOFIND
nRand = RAND()
iRecNo = CEILING(m.nClassCount * RAND())

GO m.iRecNo IN Classes
aInstructorIDs[m.nClass] = Classes.InstructorID
ENDFOR

USE Instructors

Copyright 2025, Tamar E. Granor Page 40 of 51



Can't this application go any faster?

** Now do the test

nCasellLoopStart = SECONDS()
nCasellLoopEnd = m.nCasellLoopStart + SECONDSTORUN
nCaselPasses = O

DO WHILE m.nCasellLoopEnd > SECONDS()
nCaselPasses = m.nCaselPasses + 1

** Do first test case
FOR nClass = 1 TO RECORDSTOFIND
iInstructorID = alInstructorIDs[m.nClass]

SELECT Instructor ;
FROM Instructors ;
WHERE InstructorID = m.iInstructorID ;
INTO CURSOR csrInstructor
ENDFOR
ENDDO

nCase2LoopStart = SECONDS()
nCase2LoopEnd = m.nCase2LoopStart + SECONDSTORUN
nCase2Passes = 0

* Set order once
SELECT Instructors
SET ORDER TO PrimaryKey IN Instructors

DO WHILE m.nCase2LoopEnd > SECONDS()
nCase2Passes = m.nCase2Passes + 1

** Do second test case

FOR nClass = 1 TO RECORDSTOFIND
iInstructorID = aInstructorIDs[m.nClass]
SEEK m.iInstructorID
IF FOUND()

cInstructor = Instructors.Instructor

ENDIF

ENDFOR

ENDDO

nCase3LoopStart = SECONDS()
nCase3LoopEnd = m.nCase3LoopStart + SECONDSTORUN
nCase3Passes = 0

* Use IN and ORDER

DO WHILE m.nCase3LoopEnd > SECONDS()
nCase3Passes = m.nCase3Passes + 1

** Do second test case
FOR nClass = 1 TO RECORDSTOFIND
iInstructorID = aInstructorIDs[m.nClass]
SEEK m.iInstructorID IN Instructors ORDER PrimaryKey

Copyright 2025, Tamar E. Granor Page 41 of 51



Can't this application go any faster?

IF FOUND("Instructors™)
cInstructor = Instructors.Instructor
ENDIF
ENDFOR
ENDDO
DEBUG

** Change first expression to something meaningful

DEBUGOUT "SQL SELECT ", m.nCaselPasses, " times."

DEBUGOUT "SEEK with work area and order assumed ", m.nCase2Passes,
DEBUGOUT "SEEK with IN and ORDER", m.nCase3Passes, " times."

times."

The previous test addresses the case where you know there’s no more than one matching
record, that is, a simple look-up. But what about the case where you need to find all
matches?

[t turns out that, in this case, it matters whether Rushmore can optimize the search. To test,
[ compared a single SQL SELECT against LOCATE followed by a DO WHILE FOUND() loop.
Using a field for which there was a tag, I tried both selecting a single field or selecting all
fields in the query; the version using all fields is shown in Listing 38 (SelectVsLocate.PRG
in the materials for this session). In the LOCATE example, I copied the field or fields to local
variables. With local data, the LOCATE version was an order of magnitude faster. Accessing
data across a network, the LOCATE version was only about 30% faster. (For various
reasons, [ did not retest this across a network when updating this session.)

Listing 38. When looking for multiple records that match a value, LOCATE-CONTINUE is faster than SQL
SELECT.

#DEFINE SECONDSTORUN 5
#DEFINE RECORDSTOFIND 200

LOCAL nCaselStart, nCasellLoopEnd, nCase2LoopStart, nCase2LoopEnd
LOCAL nCaselPasses, nCase2Passes

** Declare variables needed for test

LOCAL nRand, iRecNo, nInstructor, aInstructorIDs[RECORDSTOFIND]
LOCAL nInstructorCount, iInstructorID

LOCAL iClassID, cClassName, iDepartmentID, iSectionNumber

LOCAL cTerm, cUnits, nYear, cDaysAndTimes

** Do set-up work for the test
* Seed the random number generator
RAND(-1)

* Grab a bunch of instructor IDs from the Instructors database
OPEN DATABASE school\school

USE Instructors

nInstructorCount= RECCOUNT("Instructors")

FOR nInstructor = 1 TO RECORDSTOFIND
nRand = RAND()
iRecNo = CEILING(m.nInstructorCount * RAND())

Copyright 2025, Tamar E. Granor Page 42 of 51



Can't this application go any faster?

GO m.iRecNo IN Instructors
alnstructorIDs[m.nInstructor] = Instructors.InstructorlID
ENDFOR

USE Classes
** Now do the test

nCasellLoopStart = SECONDS()
nCasellLoopEnd = m.nCasellLoopStart + SECONDSTORUN
nCaselPasses = O

DO WHILE m.nCasellLoopEnd > SECONDS()
nCaselPasses = m.nCaselPasses + 1

** Do first test case
FOR nInstructor = 1 TO RECORDSTOFIND
iInstructorID = alnstructorIDs[m.nInstructor ]

SELECT * ;
FROM Classes ;
WHERE InstructorID = m.iInstructorID ;
INTO CURSOR csrClass
ENDFOR
ENDDO

nCase2LoopStart = SECONDS()
nCase2LoopEnd = m.nCase2LoopStart + SECONDSTORUN
nCase2Passes = 0

* Set order once
SELECT Classes

DO WHILE m.nCase2LoopEnd > SECONDS()
nCase2Passes = m.nCase2Passes + 1

** Do second test case
FOR nInstructor = 1 TO RECORDSTOFIND
iInstructorID = aInstructorIDs[m.nInstructor ]
LOCATE FOR InstructorID = m.iInstructorID
DO WHILE FOUND()
iClassID = Classes.ClassID
cClassName = Classes.ClassName
iDepartmentID = Classes.DepartmentID
iSectionNumber = Classes.SectionNumber
cTerm = Classes.Term
cUnits = Classes.Units
nYear = Classes.Year
cDaysAndTimes = Classes.DaysAndTimes

CONTINUE
ENDDO
ENDFOR
ENDDO

Copyright 2025, Tamar E. Granor Page 43 of 51



Can't this application go any faster?

DEBUG

** Change first expression to something meaningful
DEBUGOUT "SQL SELECT ", m.nCaselPasses, " times."
DEBUGOUT "LOCATE ", m.nCase2Passes, " times."

For my next test, | modified the search so that we were looking for records based on a pair
of unindexed fields. In this case (included in the session materials as
SelectVsLocateNoTag.PRG), with local data, the speed for the two cases was about the
same; for network data, the SQL SELECT version was about an order of magnitude faster
than the LOCATE version. (Again, I did not retest across a network for the revised paper.)

Interestingly, in my tests, the fully optimized query from Listing 37 was slower than the
unoptimized query from Listing 38. | suspect that says more about the size of the result
sets from the queries than about how the queries are being executed.

The right tags, revisited

As I mentioned in “Having the right tags,” earlier in this document, the key to VFP’s
Rushmore technology is having index tags that match the expressions you want to search
or filter on. In my client’s application, there’s both metadata and data in tables. As the
content of the metadata tables expanded to cover new functionality, we failed to add
corresponding tags. Although the largest metadata table contains only a few thousand
records, [ was able to make a significant performance improvement by adding a single tag
to that table.

Since using the right tags is optimization 101, it’s interesting that the complexity of the
application kept me from seeing that I could profitably add tags here.

Writing work area-agnostic code

I consider it a best practice to write code that doesn’t care what the current work area is as
much as possible. So, I use the IN clause on any Xbase command that supports it and add
the alias parameter to any function that accepts it. Doing so makes my code shorter and
more robust. (For a full discussion of this topic, see

http: //www.tomorrowssolutionsllc.com/Articles /Working%20with%20Work%20Areas.p
df)

After noting that some of my other best practices introduced performance penalties, [ was
concerned that these practices might also slow things down, so I tested.

My first test (shown in Listing 39, and included in the materials for this session as
SpeedTestIn.PRG) indicates no significant difference regarding using IN as opposed to
setting and restoring the work area. [ tested three cases. In the first case, the correct work
area was selected once before entering the test loop; the code makes the (risky)
assumption that the work area remains unchanged throughout the test. The second case
saves the current work area, selects the right work area just before the relevant commands
and finally, reselects the original work area. The final case looks like the code I generally

Copyright 2025, Tamar E. Granor Page 44 of 51


http://www.tomorrowssolutionsllc.com/Articles/Working%20with%20Work%20Areas.pdf
http://www.tomorrowssolutionsllc.com/Articles/Working%20with%20Work%20Areas.pdf

Can't this application go any faster?

write; no assumption is made about the work area, and each command includes the IN

clause to ensure that it executes in the correct work area.

Listing 39. The way you ensure a command applies to the right work area doesn’t matter from a performance

perspective.

Compare speed of explicit selection of workarea
vs. using IN. Three cases:

2) select work area each time through the loop
3) use IN

* ¥ ¥ X *x

#DEFINE SECONDSTORUN 5

LOCAL nCaselStart, nCasellLoopEnd

LOCAL nCase2LoopStart, nCase2LoopEnd

LOCAL nCase3LoopStart, nCase3LoopEnd

LOCAL nCaselPasses, nCase2Passes, nCase3Passes

** Declare variables needed for test
LOCAL nOldSelect

** Do set-up work for the test
OPEN DATABASE School\School
USE Classes

SELECT ©

** Now do the test

nCasellLoopStart = SECONDS()

nCasellLoopEnd = m.nCasellLoopStart + SECONDSTORUN
nCaselPasses = 0

SELECT Classes

DO WHILE m.nCasellLoopEnd > SECONDS()

nCaselPasses = m.nCaselPasses + 1

** Do first test case

DELETE FOR InstructorID = 25068
DELETE FOR InstructorID = 25390
RECALL ALL

ENDDO

nCase2LoopStart = SECONDS()
nCase2LoopEnd = m.nCase2LoopStart + SECONDSTORUN
nCase2Passes = 0

DO WHILE m.nCase2LoopEnd > SECONDS()
nCase2Passes = m.nCase2Passes + 1

** Do second test case
nOldSelect = SELECT()

SELECT Classes

DELETE FOR InstructorID = 25068

1) select work area once and assume it's unchanged

Copyright 2025, Tamar E. Granor

Page 45 of 51



Can't this application go any faster?

DELETE FOR InstructorID = 25390
RECALL ALL
SELECT (m.nOldSelect)

ENDDO

nCase3LoopStart = SECONDS()
nCase3LoopEnd = m.nCase3LoopStart + SECONDSTORUN
nCase3Passes = 0

DO WHILE m.nCase3LoopEnd > SECONDS()
nCase3Passes = m.nCase3Passes + 1

** Do third test case
DELETE FOR InstructorID
DELETE FOR InstructorID
RECALL ALL IN Classes
SELECT o

ENDDO

25068 IN Classes
25390 IN Classes

DEBUG

** Change first expression to something meaningful
DEBUGOUT "SELECT once ", m.nCaselPasses, " times."
DEBUGOUT "SELECT each pass ", m.nCase2Passes, " times."
DEBUGOUT "Use IN ", m.nCase3Passes, " times."

Since the code using IN is shorter and safer, I'm relieved that there’s no penalty for using it.

My next test focused on passing the right alias instead of setting the work area before
calling a function. Since I felt SEEK offered the most robust test, the test also looks at
explicitly setting the table order vs. passing the desired order. For completeness, the code
also checks whether there’s any difference between using the SEEK command and the
SEEK() function. The test code is shown in Listing 40; it's included in the session materials
as SpeedTestSeek.PRG.

Listing 40. There are a lot of different ways to do an indexed search. This code tests to see which is fastest.

Compare speed of different approaches

to SEEK. Six cases:

1) SEEK command with alias and order already set

2) SEEK command including alias, order already set

3) SEEK command with alias and order specified

4) SEEK() function with alias and order already set
5) SEEK() function including alias, order already set
6) SEEK() function with alias and order specified

In SEEK command cases, FOUND() follows the command
with respect to whether the alias is specified.

* X X X X X X X ¥ *

#DEFINE SECONDSTORUN 30
#DEFINE RECORDSTOFIND 100

LOCAL nCaselStart, nCasellLoopEnd, nCase2LoopStart, nCase2lLoopEnd, ;
nCase3LoopStart, nCase3LoopEnd

Copyright 2025, Tamar E. Granor Page 46 of 51



Can't this application go any faster?

LOCAL nCaselPasses, nCase2Passes, nCase3Passes

LOCAL nCase4Start, nCase4lLoopEnd, nCase5LoopStart, nCase5LoopEnd, ;
nCase6LoopStart, nCase6LoopEnd

LOCAL nCase4Passes, nCase5Passes, nCase6Passes

** Declare variables needed for test

LOCAL nOldSelect, aStudentIDs[RECORDSTOFIND], nStudentCount, nStudent, iStudentID

SET TALK OFF

** Do set-up work for the test
OPEN DATABASE School\School
USE Students

* Build a list of student IDs to seek
nStudentCount = RECCOUNT("Students")
FOR nStudent = 1 TO RECORDSTOFIND

nRand = RAND()

iRecNo = CEILING(m.nStudentCount * RAND())

GO m.iRecNo IN Students
aStudentIDs[m.nStudent ] = Students.StudentID
ENDFOR

** Now do the test
* 1) SEEK command with alias and order already set

nCasellLoopStart = SECONDS()
nCasellLoopEnd = m.nCasellLoopStart + SECONDSTORUN
nCaselPasses = 0

SELECT Students
SET ORDER TO PRIMARYKEY  && STUDENTID

DO WHILE m.nCasellLoopEnd > SECONDS()
nCaselPasses = m.nCaselPasses + 1

** Do first test case
FOR nStudent = 1 TO RECORDSTOFIND
iStudentID = aStudentIDs[m.nStudent]
SEEK m.iStudentID
IF FOUND()
* Do something
ENDIF
ENDFOR

ENDDO

* 2) SEEK command including alias, order already set
nCase2LoopStart = SECONDS()

nCase2LoopEnd = m.nCase2LoopStart + SECONDSTORUN
nCase2Passes = 0

DO WHILE m.nCase2LoopEnd > SECONDS()
nCase2Passes = m.nCase2Passes + 1

Copyright 2025, Tamar E. Granor

Page 47 of 51



Can't this application go any faster?

** Do second test case

FOR nStudent = 1 TO RECORDSTOFIND
iStudentID = aStudentIDs[m.nStudent]
SEEK m.iStudentID IN Students
IF FOUND("Students")

* Do something
ENDIF
ENDFOR

ENDDO
* 3) SEEK command with alias and order specified

nCase3LoopStart = SECONDS()
nCase3LoopEnd = m.nCase3LoopStart + SECONDSTORUN
nCase3Passes = 0

DO WHILE m.nCase3LoopEnd > SECONDS()
nCase3Passes = m.nCase3Passes + 1

** Do third test case

FOR nStudent = 1 TO RECORDSTOFIND
iStudentID = aStudentIDs[m.nStudent]
SEEK m.iStudentID ORDER PrimaryKey IN Students
IF FOUND("Students")

* Do something

ENDIF

ENDFOR

ENDDO

* 4) SEEK() function with alias and order already set

nCase4LoopStart = SECONDS()
nCase4lLoopEnd = m.nCased4lLoopStart + SECONDSTORUN
nCase4Passes = 0

SELECT Students
SET ORDER TO PRIMARYKEY

DO WHILE m.nCase4LoopEnd > SECONDS()
nCase4Passes = m.nCased4Passes + 1

** Do fourth test case
FOR nStudent = 1 TO RECORDSTOFIND
iStudentID = aStudentIDs[m.nStudent]
IF SEEK(m.iStudentID)
ENDIF
ENDFOR
ENDDO

* 5) SEEK() function including alias, order already set

nCase5LoopStart = SECONDS()

Copyright 2025, Tamar E. Granor Page 48 of 51



Can't this application go any faster?

nCase5LoopEnd = m.nCase5LoopStart + SECONDSTORUN
nCase5Passes = 0

DO WHILE m.nCase5LoopEnd > SECONDS()
nCase5Passes = m.nCase5Passes + 1

** Do fifth test case
FOR nStudent = 1 TO RECORDSTOFIND
iStudentID = aStudentIDs[m.nStudent]
IF SEEK(m.iStudentID, "Students™)
ENDIF
ENDFOR
ENDDO

* 6) SEEK() function with alias and order specified

nCase6LoopStart = SECONDS()
nCase6LoopEnd = m.nCase6LoopStart + SECONDSTORUN
nCase6Passes = 0

DO WHILE m.nCase6LoopEnd > SECONDS()
nCase6Passes = m.nCase6Passes + 1

** Do sixth test case
FOR nStudent = 1 TO RECORDSTOFIND
iStudentID = aStudentIDs[m.nStudent]
IF SEEK(m.iStudentID, "Students", "PrimaryKey")
ENDIF
ENDFOR
ENDDO

DEBUG

** Change first expression to something meaningful

DEBUGOUT "SEEK Command, assuming alias and order ", m.nCaselPasses,
DEBUGOUT "SEEK Command, assuming order", m.nCase2Passes, " times."
DEBUGOUT "SEEK Command, including alias and order", m.nCase3Passes, " times."

times."

DEBUGOUT "SEEK Function, assuming alias and order ", m.nCase4Passes, " times."
DEBUGOUT "SEEK Function, assuming order", m.nCase5Passes, " times."
DEBUGOUT "SEEK Function, including alias and order", m.nCase6Passes, " times.”

[ set up a loop to run the tests repeatedly and store the results in a cursor. I felt this would
help smooth out any issues caused by other things running at the same time.

When I tested in 2015, I found the SEEK() function to be a little faster than the
corresponding SEEK command. This was least true when alias and order were assumed,
with an average of less than a 1% difference. It was most true for the case where neither
alias nor order was assumed, where the function was about 10% faster than the command.
This year, I found little difference between them and sometimes the SEEK command was
faster than the corresponding SEEK() function. My conclusion is that there’s no difference
here worth worrying about.

Copyright 2025, Tamar E. Granor Page 49 of 51



Can't this application go any faster?

As for different ways of using the command and the function, not surprisingly, setting the
work area and order once before the test loop (cases 1 and 4) was fastest, and explicitly
specifying the alias and order (cases 3 and 6) was slowest. Table 3 shows the average

differences, rounded to integers.

Table 3. The SEEK() function and the SEEK command seem to take about the same time. Not surprisingly,
assuming you already are in the right work area and have the right order set is the fastest case, though also

the riskiest.

Faster Test Case Slower Test Case Average
difference

Case 1: SEEK command, alias and Case 2: SEEK command, alias 18%
order already specified included, order already specified
Case 1: SEEK command, alias and Case 3: SEEK command, alias and 35%
order already specified order included
Case 2: SEEK command, alias Case 3: SEEK command, alias and 15%
included, order already specified order included
Case 4: SEEK function, alias and Case 5: SEEK function, alias 14%
order already specified included, order already specified
Case 4: SEEK function, alias and Case 6: SEEK function, alias and 27%
order already specified order included
Case 5: SEEK function, alias Case 6: SEEK function, alias and 11%

included, order already specified

order included

I'll be cognizant of these results when optimizing, but also cautious about writing code that
makes assumptions about work areas and index orders. After all, accurate code beats fast

code every time.

Resources

Not surprisingly, lots of words have been written about code optimization. Here are a few

good references.

Steve McConnell’s classic “Code Complete” has a couple of chapters addressing the topic.
While not all of his suggestions are relevant for VFP, there’s plenty of meat there.

The VFP Help file includes a number of topics on optimization. Start with “Optimizing

Applications.”

['ve written previously about Rushmore and performance of VFP’s SQL commands. These
two articles on my website go into more depth on SQL ShowPlan and optimizing queries:
http://tinyurl.com/pjc9m7w and http://tinyurl.com/ohtbcyw.

Copyright 2025, Tamar E. Granor

Page 50 of 51



http://tinyurl.com/pjc9m7w
http://tinyurl.com/ohtbcyw

Can't this application go any faster?

“Hacker’s Guide to Visual FoxPro,” which I wrote with Ted Roche, Doug Hennig and Della
Martin, has a chapter called “Faster Than a Speeding Bullet,” that discusses various
performance issues, some of which are covered in this paper and some of which are not.

The Bottom Line

Optimizing applications is an ongoing process. The first step is having some idea what's fast
and what'’s slow in the language you're working in. Then, you can choose clearly faster
alternatives when writing code in the first place.

On the other hand, for most applications, it’s not a good idea to spend time squeezing out
every millisecond of performance before the code actually works. In many cases, a slightly
slower, but more readable or maintainable option is a better choice.

Once an application works, if its performance is a problem, it’s time to bring out the tools
that let you figure out exactly what’s slow and tune those portions.

Copyright 2025, Tamar E. Granor Page 51 of 51



